

The dynamic response of offshore wind turbines and their sensitivity to wind field models

Maylinn Haaskjold Myrtvedt Astrid Nybø & Finn Gunnar Nielsen

Geophysical Institute & Bergen Offshore Wind Centre

UNIVERSITY OF BERGEN

Outline

TURBINE LOAD RESPONSE ANALYSIS

20/01/2020

Motivation

Generate turbulence wind fields based on: IEC standard and measurements

Find the impact on turbine response due to coherence and atmospheric stability

Investigate global and local responses of offshore wind turbines

Bottom fixed and spar floater simulations

Simulation program: SIMA Input: pre-generated wind fields

Global response:

- Tower bottom fore-aft bending moment (TBBM)
- Tower top fore-aft bending moment (TTBM)
- Tower top yaw moments (TTYM)

Local response:

 Flapwise bending moment in the blade root (one blade) (FBM)

20/01/2020

Measurements and time series selection

The wind fields

Kaimal spectral model: TurbSim turbulence simulator

Reproduce turbulence time series using Kaimal spectrum and IEC exponential coherence function

Mann uniform shear model: DTU Mann generator

• Three-dimensional wind boxes with turbulence from spectral tensor. Coherence implicit.

TIMESR: A TurbSim option

• Spectral amplitudes and phase angles measured time series. (40, 60 and 80 m height). Davenport coherence function.

DTU 10 MW offshore wind turbines

Results: the generated wind turbulence

Power spectral density at the hub centre for 12.5 m/s mean wind speed. Simulated fields.

Results: the generated wind turbulence

The relation between co- and quad coherence of the u-component for 12.5 m/s mean wind speed. 40 m vertical separation distance

$$\gamma_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_x(f) \cdot S_y(f)}} = Co_{xy}(f) + iQu_{xy}(f)$$

Results: the generated wind turbulence

The co-coherence of the u-component for 12.5 m/s mean wind speed. Separation D/2 (89.15m)

IEC Kaimal uu co-coherence vertical separation ------ Unstable TIMESR (Davenport) Stable TIMESR (Davenport) 0.8 Neutral TIMESR (Davenport) 0.6 Mann 0.4 0.2 ------------0 -0.2 0.2 0.1 0.3 0.4 0.5 0 Reduced frequency (fr/U)

Vertical separation

Horizontal separation

Results: Tower bottom fore-aft bending moment:

Standard deviation of TBBM in MNm.

Load spectra of TBBM.

top: bottom fixed, bottom: floating

Results: Tower top fore-aft bending moment:

Standard deviation of TTBM in MNm.

Load spectra of TTBM.

top: bottom fixed, bottom: floating

EERA DEEPWIND'2020 – 15TH OF JANUARY 2020 – MAYLINN HAASKJOLD MYRTVEDT **Results: Flap-wise bending moment**

Standard deviation of FBM in MNm.

Neutral Stable Unstable

EERA DEEPWIND'2020 - 15TH OF JANUARY 2020 – MAYLINN HAASKJOLD MYRTVEDT

top: bottom fixed, bottom: floating

Conclusions

- Various techniques for generating turbulent wind field gives large differences in coherence.
- Co-coherence may be negative and quad-coherence significant.
- Global and local loads on a fixed and a floating wind turbine has been investigated.
 - Loads are sensitive to choice of wind model.
 - Loads are sensitive to atmospheric stability.
- It is not obvious which model gives the most realistic results

Thank you for the attention!

UNIVERSITY OF BERGEN Bergen Offshore Wind Centre

