

#### Taking the motion out of floating lidar: A method for correcting estimates of turbulence intensity



Felix Kelberlau(NTNU)Vegar Neshaug(Fugro)Lasse Lønseth(Fugro)Tania Bracchi(NTNU)Jakob Mann(DTU)

EERA DeepWind'2020, Trondheim, Norway 15 - 17 January 2020





#### Setup (1/2): SEAWATCH wind lidar buoy

- ZX300M wind lidar (ZX Lidars)
  - Doppler spectra, 49Hz
- MRU 6000 IMU (Norwegian Subsea)
   6 DOF motion, 50Hz
- Embedded PC
- GPS time server





#### Setup (2/2): Land based reference lidar

- Onshore reference lidar (ZX300)
- Frøya, Norway
- One month of data: April/May 2019
- 11 heights
  - 10 comparable:
    30-250m a.s.l.
- Offshore sector





# **Objective: Removing motion induced turbulence**

Buoy motion increases estimates of turbulence intensity (TI)

• Compensate for the motion induced TI

$$TI_{lidar,floating} = TI_{lidar,fixed}$$



## Approach

Compensation for every single line-of-sight measurement

 Translatory motion (Changed radial velocities)

2. Changing scanning geometry (Figure-of-eight fitting)

 Wind shear and veer (Changing measurement height)



#### Challenge 1: Access to line-of-sight data

- Embedded PC onboard
- Remote connection
- Waltz stream to file
- Files contain Doppler spectra but no radial velocities
- Determine radial velocities from Doppler spectra





#### Challenge 2: Emulate data processing (1/2)

 Wind vectors reconstructed by the unit's internal and my emulated processing are similar but not identical: TI: emulated vs. internal processing



- The effect is stronger for higher elevations
- Potential reasons:
  - Advanced radial velocity determination from Doppler spectra (Cloud detection)
  - Filtering of certain "bad" radial velocities
- We cannot imitate the ZX300 processing exactly

15.01.2020 – Taking the motion out of floating lidar

#### Challenge 2: Emulate data processing (2/2)

- As a consequence we will use three different datasets:
  - 1. Land reference: Data as it comes out of fixed unit 495
  - **2. Floating uncompensated**: Data as it comes out of floating unit 593
    - I. Emulated uncompensated: Data of unit 593 processed in a conventional way by my own code
    - **II. Emulated compensated**: Data of unit 593 processed in a conventional way by my *own code with motion compensation*
  - 3. Floating compensated:
    - Floating uncompensated

-(Emulated uncompensated – Emulated compensated)

Motion compensation

The aim is to see the same results between 1. & 3.



#### Challenge 3: Time synchronization (1/2)

| 1 | Date       | Time    | IMUTimestamp_[-]_[-] |
|---|------------|---------|----------------------|
| 2 | 03/04/2019 | 53:01.7 | 2597921063           |

• MRU timestamp can be used directly (hh:mm:ss.xxxx)

| 1 | Time and Date       | Timestamp (s) | Uptime (ms) |
|---|---------------------|---------------|-------------|
| 2 | 04.04.2019 20.52.57 | 621809577     | 203314069   |

- Lidar Timestamp (hh:mm:ss) and Uptime value (ms) are independent
  - Uptime values are slower than Timestamp. Approx. 1.2s shift per day -> Reset once per day

Motion and wind data must be synchronized



#### **Results (1/4): TI vertical profile**



11/16

15.01.2020 – Taking the motion out of floating lidar

NTNU



12/16

15.01.2020 – Taking the motion out of floating lidar

#### Results (3/4): Error analysis 0.2 $TI_{ref}, \frac{\overline{\alpha}}{50}, \epsilon$ 0.1TI-0.1 -0.2100 200300 400 500600 700 800 Interval no. Uncomp. $(TI_{unc} - TI_{ref})$ — 30-min mean PDF $\mu, \sigma$ — Tilt amplitude $\overline{\alpha}$ — $TI_{unc}$ Comp. $(TI_{com} - TI_{ref})$ $\mu, \sigma$ — Emulation error $\epsilon$ — $TI_{ref}$ PDF**-** 30-min mean



13/16

15.01.2020 – Taking the motion out of floating lidar



14/16

15.01.2020 – Taking the motion out of floating lidar

## Conclusions

#### Motion compensation on line-of-sight level works very well!

- Drawbacks:
  - Cumbersome acquisition of line-of-sight velocities
  - No knowledge about filter on line-of-sight level
  - No direct time synchronization
  - Not many samples per 10min per height
  - Large distance between the two lidar units

When time series of wind data are not required there might be a simpler solution

BTW: Horizontal mean wind speeds are also corrected



#### Thank...

... you for your attention and...



... for funding this project.

16/16

