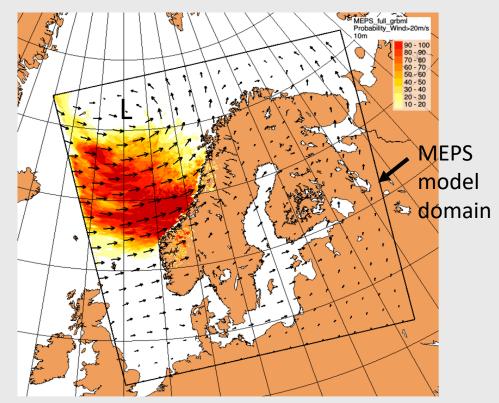
Norwegian Meteorological Institute

Evaluation of different methods for reducing wind at oil platforms to 10 m reference height

Olsen, A.M., Berge. E., Øiestad, M.H., Køltzow, M.Ø. and Valkonen, T. The Norwegian Meteoreological Institute

21.01.2020

Background for this study:

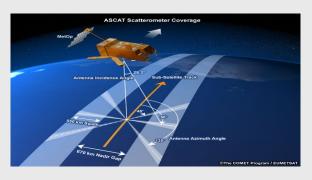

- Assimilation of measurements is a key part of modern Numerical Weather Prediction (NWP).
- Wind measurements at oil platforms are presently reduced to 10 m above sea level (a.s.l) before assimilated in MET's NWP-model.
- In this study we want to assess and improve current methods for wind speed reduction to 10 m a.s.l. and thereby increase the accuracy of the weather predictions.
- The results are applicable both to offshore wind resource assessment and short term wind energy forecasting.

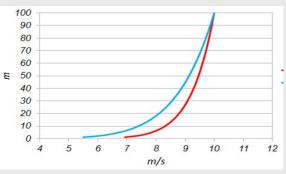
MEPS NWP-model at MET:

• MEPS

- M-MetCoOp operational cooperation with Sweden and Finland
- EPS-Ensemble Prediction
 System
- 10 ensemble members are run every 6-hour. From 4 Feb. 2020 a continuous production will provide 30 new ensemble members within a 6-hour window
- MEPS gives probability forecasts of for example wind speed (see figure)
- Data available at https://thredds.met.no

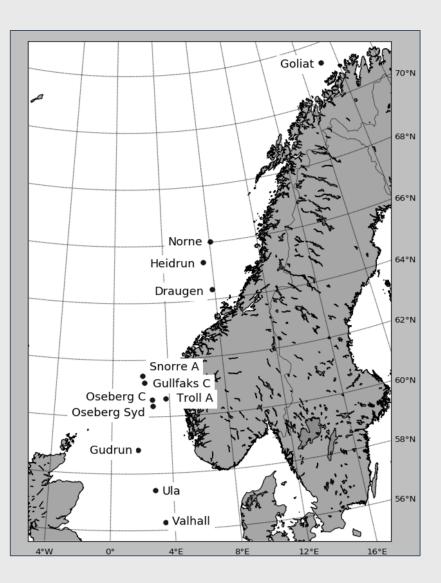
Probability of exceeding 20 m/s at 10 m a.s.l., 18 UTC 08.01.2020 given by MEPS





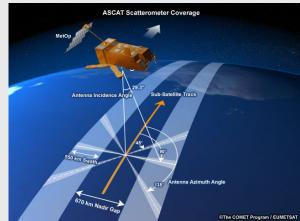
Data and methodology:

- Hourly platform observations of wind
- Screening of the quality of the wind observations and selection of the dataseries.
- Advanced Scatterometer (ASCAT) satellite data at 10 m a.s.l. for validation
- Evaluating six different wind profiles to calculate 10 m a.s.l. wind speed.



Selected platform observations:

- 12 out of 26 observations selected for this study
 - Cover North
 Sea,
 Norwegian
 Sea, Barents
 Sea
- Sensor heights: 47-140 m a.s.l.


Platform	Height above sea level [m]		
Draugen	78		
Goliat	71		
Gudrun	84		
Gullfaks C	140		
Heidrun	131		
Norne	47		
Oseberg C	120		
Oseberg Syd	126		
Snorre A	115		
Troll A	94		
Ula	111		
Valhall	120		

Norwegian Meteorological Institute

Advanced Scatterometer (ASCAT):

- Microwave radar onboard polar-orbiting satellites
- Wind speed and direction can be retrieved from the backscattered signal
- The Ocean and Sea Ice Satellite Application Facility (OSI SAF) of EUMETSAT processes the wind products from the calibrated backscatter

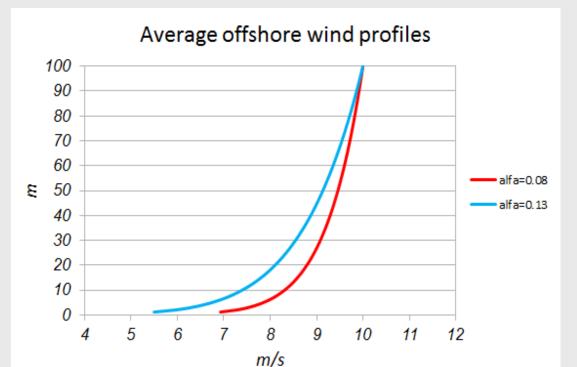
Fan beam scatterometer METOP-ASCAT

Frequency:	5.3 GHz (C-band)	
Wavelength:	5 cm	
Limitations:	higher wind range >30 m/s	
Sampling:	12.5 - 25 km	
Geometry:	static	
Swath :	double (about 550 km each)	

< 1 m/s

15 m/s

Wind profiles:


• Power Law:

$$U_s = U_{10}(\frac{h}{10})^p$$

 U_s - wind speed at sensor level h U_{10} - wind speed at 10 meter height

4 different profile methods are tested:

- p = 0.13 (present method)
- ✤ p = 0.08 (typical value for neutral stability and wind speeds of 8-10 m/s).
- p dependent on stability
- p dependent on stability and wind speed

lorwegian Ieteorological

Institute

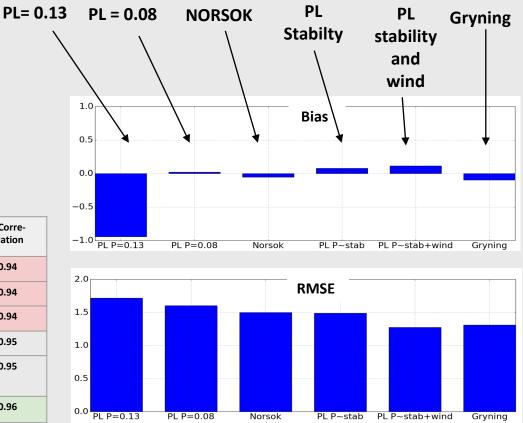
21.01.2020 DeepWind2020

Wind profiles continued:

• NORSOK wind profile (Standards Norway, 2007). Based on the near offshore measurements at the island of Frøya.

 $U_{s} = U_{10} \left[1 + C \ln \left(\frac{h}{10} \right) \right]$ where $C = 5.73 \times 10^{-2} \left[1 + 0.15 \times U_{10} \right]^{1/2}$

- **Gryning et al. (2007) wind profile.** Vertical wind profile method for which three length scales L_{SL} (surface), L_{MBL} (middle boundary layer) and L_{UBL} (upper boundary layer) are calculated for neutral, stable and unstable conditions.
- In addition to atmospheric stability, friction velocity, sensible heat flux and boundary layer heights are important input parameters to the scheme.
- All parameters for the Gryning method are obtained from the MEPS NWP-model.


Norwegian Meteorological Institute

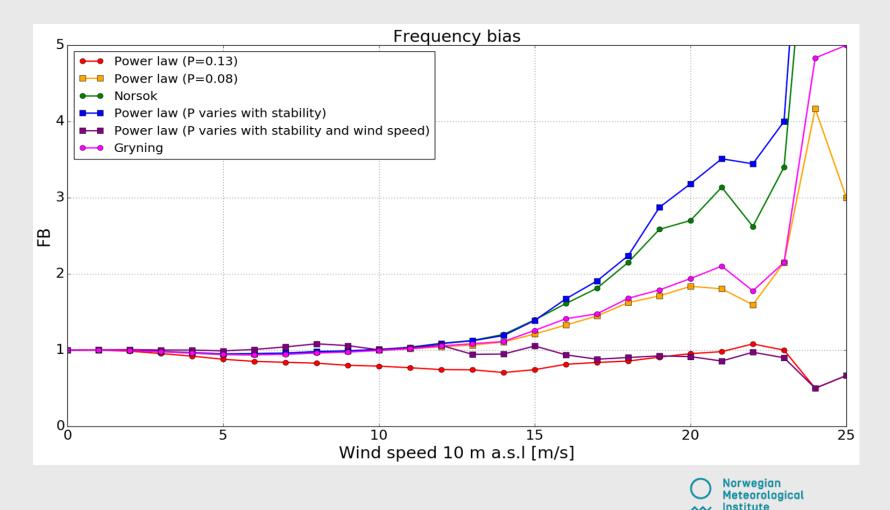
Summary of results from all 12 platforms:

PL - Power Law

Bias - Mean Error RMSE - Root Mean Square Error

	Bias	RMSE	MAE	Corre- lation
Power law P=0.13	-0.94	1.72	1.4	0.94
Power law P=0.08	0.02	1.60	1.22	0.94
Norsok	-0.05	1.50	1.22	0.94
Power law (P varies with stability)	0.08	1.49	1.12	0.95
Power law (P varies with stability and wind speed)	0.11	1.28	0.95	0.95
Gryning	-0.10	1.31	0.98	0.96

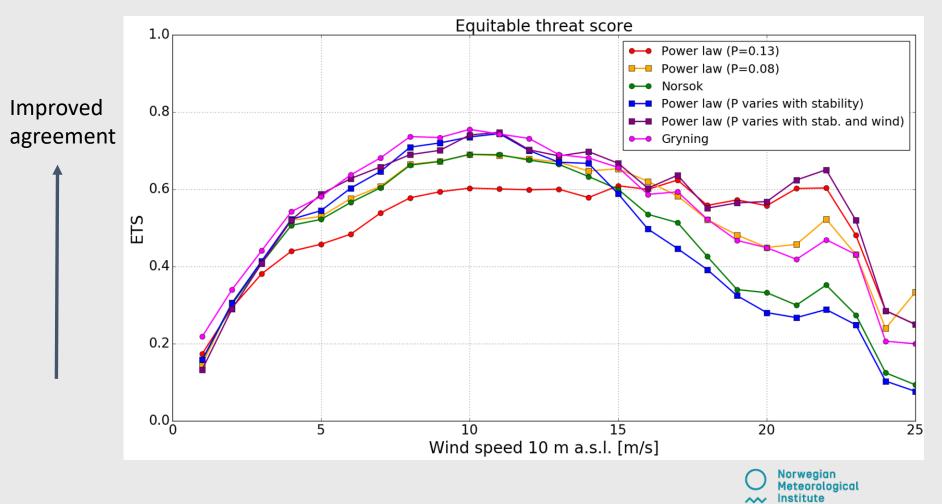
Scatter plots – all platforms:



Norwegian Meteorological

21.01.2020 DeepWind2020

Frequency bias (FB) all platforms:


• FB > 1 occurrence overpredicted, FB < 1 occurrence underpredicted

21.01.2020 DeepWind2020

Equitable threat score (ETS) – all platforms:

• ETS = 1 perfect prediction, ETS=0 no prediction skill

Summary:

- Present wind speed reductions at Norwegian oil platforms underestimate wind speed at 10 m height. An exception is during very high wind speeds.
- An empirical derived method applying the power law with a dependence on stability and wind speed (PL-stability and wind) yields the best wind speed reduction among the 6 methods compared in this study.
- The Gryning et al. (2007) method also gives good agreement, but PLstability and wind shows better results for wind speeds above ca. 15 m/s
- Inaccuracies in the platform observations and uncertainties in the ASCAT data may have influenced the results

Summary :

- <u>For offshore wind energy analysis:</u> It is recommended to test the PLstability and wind method further with offshore wind profile measurements from Lidars and/or offshore masts.
- <u>For assimilation in NWP-models:</u> It is recommended (1) to test assimilations of the 10 m level data after applying the PL-stability and wind method, and (2) to test assimilation of the measurements at the observations level.