## Dynamic Analysis of Power Cable in Floating Offshore Wind Turbine

Presenter :MohsenSobhaniasl (Sapienza)<br/>(Second year PhD Student)Email:Mohsen.Sobhaniasl@Uniroma1.it

Co-Authors:Dr. FrancescoPetrini (Sapienza)Dr. MadjidKarimirad (QUB)Prof. FrancoBontempi(Sapienza)







## **Presentation Highlights**



#### Part 1. Motivation and Background

Between 1971 and 2015, global energy consumption more than doubled from 61,900 TWh to 160,000 TWh (EIA, 2017; IEA, 2017a).



- Hydropower 16.6%
- Wind power 4.0%
- Bio-power 2.0%
- Solar PV 1.5%
- Ocean, CSP, and geothermal power 0.4%

Figure 1. Estimated renewable energy share of global electricity production at the end of 2016; data extracted from REN21 (2017).

### Part 1. Motivation and Background

Europe installed 11.7 GW (10.1 GW in EU-28) of new wind energy in 2018. This is a 32% decrease on 2017. Europe decommissioned 0.4 GW of wind turbines. So the net increase in Europe's wind energy capacity in 2018 was 11.3 GW.



Figure 2. Total power generation capacity in the European Union 2008-2018

Figure 3. Renewable energy investments in 2018 (€bn)14

Wind energy accounted for 63% of Europe's investments in renewable energy in 2018, compared to 52% in 2017. Onshore wind projects alone attracted 39% of the total investment activity in the renewable energy sector

## Part 2. Offshore Wind Technology Development



Figure 4. Natural progression of substructure designs from shallow to deep water(source NREL)

16 January 2020

## Part 2. Offshore Wind Technology Developement

## ✓ Barge

✓ Spar-Buoy

## ✓ Tension Leg Platform (TLP)



Figure 5. Floating platform concepts for offshore wind turbines

#### Part 2. Complexity of Infrastructure of FOWTs



Layout of Horns Rev 2 Wind Farm







#### Source NREL

Dynamic Anaysis of Power Cable in FOWT

16 January 2020

Page 7

## Part 2. Fatigue as an issue for FOWTs

## Source of Failure

- Fatigue
- Corrosion
- Fishing



Source: Floating Offshore Wind: Market and Technology Review



Dynamic Anaysis of Power Cable in FOWT

16 January 2020

Page 8

# Modeling

## **Part 3. Numerical Modeling**



FAST

Is a tool for simulating the coupled dynamic response of wind turbines.



Figure 6. Model of FOWT in FAST code



#### **ANSYS AQWA**

Is an engineering analysis suite of tools for the investigation of the effects of wave, wind and current on floating and fixed offshore and marine structures,.



Figure 7. Model of FOWT in Ansys AQWA

## Part 3. Global Dynamics and Loads



16 January 2020

#### Part 3. Benchmark for Validation





Structural Properties of Mooring Lines

| Description                                                                    | Unit      |  |  |
|--------------------------------------------------------------------------------|-----------|--|--|
| the mass per unit length of the line (kg/m)                                    | 77.7066   |  |  |
| the line stiffness, product of elasticity modulus and cross-sectional area (N) | 384.243E6 |  |  |
| Diameter (m)                                                                   | 0.09      |  |  |
|                                                                                |           |  |  |

Hydrodynamic Properties of Model

|   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                               |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
|   | Water density (kg/m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1025                                                                                                               |  |  |
|   | Water depth (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 320                                                                                                                |  |  |
|   | Displaced volume of water when the                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8029.21                                                                                                            |  |  |
|   | platform is in its undisplaced position (m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |  |  |
|   | Incident wave kinematics model                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regular                                                                                                            |  |  |
|   | Analysis time for incident wave calculations (s)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3630                                                                                                               |  |  |
|   | Time step for incident wave calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                                                                                               |  |  |
|   | Significant wave height of incident waves (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                  |  |  |
| ~ | Peak-spectral period of incident waves                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                 |  |  |
|   | Range of wave directions(degrees)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                 |  |  |
|   | Wave Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stokes 2 <sup>nd</sup> -order wave theory                                                                          |  |  |
|   | Low frequency cutoff used in the summation-frequencies (rad/s)                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |  |  |
|   | High frequency cutoff used in the summation-frequencies (rad/s)                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9132                                                                                                             |  |  |
|   | High frequency cutoff used in the summation-frequencies (rad/s)<br>Current profile model                                                                                                                                                                                                                                                                                                                                                                                                | 1.9132<br>No Current                                                                                               |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)                                                                                                                                                                                                                                                                                                                                                               | 1.9132<br>No Current<br>1000                                                                                       |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)                                                                                                                                                                                                                                                                                                                                     | 1.9132<br>No Current<br>1000<br>0.0125                                                                             |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)                                                                                                                                                                                                                                                                                    | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000                                                                  |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)<br>Additional Linear Damping in Sway<br>N/(m/s)                                                                                                                                                                                                                                    | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000<br>100,000                                                       |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)<br>Additional Linear Damping in Sway<br>N/(m/s)<br>Additional Linear Damping in Heave<br>N/(m/s)                                                                                                                                                                                   | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000<br>100,000<br>130,000                                            |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)<br>Additional Linear Damping in Sway<br>N/(m/s)<br>Additional Linear Damping in Heave<br>N/(m/s)<br>Additional Linear Damping in Yaw<br>Nm(rad/s)                                                                                                                                  | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000<br>100,000<br>130,000<br>13,000,000                              |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)<br>Additional Linear Damping in Sway<br>N/(m/s)<br>Additional Linear Damping in Heave<br>N/(m/s)<br>Additional Linear Damping in Yaw<br>Nm(rad/s)<br>Hydrostatic Restoring in Heave (N/m)                                                                                          | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000<br>100,000<br>130,000<br>13,000,000<br>332,941                   |  |  |
|   | High frequency cutoff used in the<br>summation-frequencies (rad/s)<br>Current profile model<br>Analysis time for wave (s)<br>Time step for wave (s)<br>Additional Linear Damping in Surge<br>N/(m/s)<br>Additional Linear Damping in Sway<br>N/(m/s)<br>Additional Linear Damping in Heave<br>N/(m/s)<br>Additional Linear Damping in Yaw<br>N/(m/s)<br>Additional Linear Damping in Yaw<br>Nm(rad/s)<br>Hydrostatic Restoring in Heave (N/m)<br>Hydrostatic Restoring in Roll (Nm/rad) | 1.9132<br>No Current<br>1000<br>0.0125<br>100,000<br>100,000<br>130,000<br>13,000,000<br>332,941<br>-4,999,180,000 |  |  |

16 January 2020

## Part 3. Load Case for Validation

| DOF             | Wind Condition                  | Wave Condition              | Analysis Type        |
|-----------------|---------------------------------|-----------------------------|----------------------|
| Platform, Tower | Steady, Uniform<br>Vhub = 8 m/s | Regular Airy: H=6m<br>T=10S | Time-Series solution |

| Description                  | Unit         |
|------------------------------|--------------|
| Total run time (s)           | 1000         |
| Time steps for Analysis (s)  | 0.0125       |
| Time step for tabular output | : (s) 0.1    |
| Compute structural dynamic   | cs ElastoDyn |
| Compute hydrodynamic         | HydroDyn     |
| Compute mooring system       | MoorDyn      |
| Compute inflow wind veloci   | ties Off     |
| Compute aerodynamic load     | s Off        |
| Compute control and elect    | rical- Off   |
| drive dynamics               |              |
| Compute sub-strue            | ctural Off   |
| dynamics                     |              |
| Compute ice loads            | Off          |

## Part 3. Flowchart of modeling in FAST



Source NREL

## **Part 3. Result Validation**

Platform Heave



16 January 2020

## Part 3. Result Validation



Figure 9. Jonkman Report Surge

## Part 3. Result Validation



## Part 3. Motion in Ansys AQWA



#### Part 4. Flowchart for fatigue analysis of electrical cable



## Part 4. Properties of Electrical Cable



Standard flexible riser configurations for floating offshore structures

## Part 4. Properties of Electrical Cable

Parameter of short-term sea state (South China Sea)

5.6 0.675 0.168 2.24096 4 6 0.675 5 0.180 8.68372 7 1.050 4 0.210 1.96084 7.80 1.050 0.234 14.006 6 8.5 1.550 0.255 4 1.4006 9 1.550 5 0.270 10.36444 9.40 1.550 6 0.282 20.16864 2.175 0.324 5.32228 10.8 5 11.2 2.175 6 0.336 15.4066 12 2.875 0.360 8.96384 6 13.2 3.625 6 0.396 3.08132 14.5 0.432 0.56024 4 6 15.0 4.5 0.450 3.64156 7 16.1 5 7 0.483 0.84036 16.7 4.5 10 0.501 0.84036 17.2 4.5 11 0.516 0.28012 5.5 0.522 17.4 10 0.56024 18 5.5 0.540 0.56024 11 19.1 6.750 10 0.573 0.84020 20 3.625 12 0.6 0.280

#### S – N Curve Used for Cable Section



Source: Karlsen, S., Slora, R, Heide, K., Lund, S. Eggertsen, F. and Osborg, P.A. Dynamic Deep Water Power Cables. 2009 RAO/CIS Offshore, pp.184-203.

#### Part 4. Cable tension in different sea states



Stress Time History in Different Sea States and Rainflow Cycles

#### Part 4. Fatigue Life estimation

| Vw (m/s)             | total damage<br>(1000 sec) | total damage (1<br>day) | P (%)  | Yearly Damage |
|----------------------|----------------------------|-------------------------|--------|---------------|
| 5.6                  | 3.60407E-09                | 3.11392E-07             | 2.241  | 2.54703E-06   |
| 6                    | 4.37E-09                   | 3.77725E-07             | 8.6837 | 1.19722E-05   |
| 7                    | 2.64145E-09                | 2.28221E-07             | 1.9608 | 1.63339E-06   |
| 7.8                  | 3.95964E-09                | 3.42113E-07             | 14.006 | 1.74894E-05   |
| 8.5                  | 1.87E-09                   | 1.61391E-07             | 1.4006 | 8.2506E-07    |
| 9                    | 3.9601E-09                 | 3.42152E-07             | 10.364 | 1.29437E-05   |
| 9.4                  | 5.12178E-09                | 4.42522E-07             | 20.169 | 3.25765E-05   |
| 10.8                 | 6.85957E-09                | 5.92667E-07             | 5.3223 | 1.15133E-05   |
| 11.2                 | 7.69934E-09                | 6.65223E-07             | 15.407 | 3.74082E-05   |
| 12                   | 8.92858E-09                | 7.71429E-07             | 8.9638 | 2.52396E-05   |
| 13.2                 | 1.01E-08                   | 8.68329E-07             | 3.0813 | 9.76594E-06   |
| 14.5                 | 1.06209E-08                | 9.17649E-07             | 0.5602 | 1.87648E-06   |
| 15                   | 3.07823E-08                | 2.65959E-06             | 3.6416 | 3.53505E-05   |
| 16.1                 | 1.74282E-08                | 1.5058E-06              | 0.8404 | 4.61876E-06   |
| 16.7                 | 2.41503E-08                | 2.08658E-06             | 0.8404 | 6.4002E-06    |
| 17.2                 | 2.81661E-08                | 2.43355E-06             | 0.2801 | 2.48816E-06   |
| 17.4                 | 3.74334E-08                | 3.23425E-06             | 0.5602 | 6.61364E-06   |
| 18                   | 5.1396E-08                 | 4.44061E-06             | 0.5602 | 9.0805E-06    |
| 19.1                 | 9.12866E-08                | 7.88716E-06             | 0.8402 | 2.41878E-05   |
| 20                   | 3.61286E-08                | 3.12151E-06             | 0.28   | 3.19018E-06   |
| Sum of yearly damage |                            |                         |        | 0.000257721   |
| Safety Factor        |                            |                         |        | 10            |
| Lifetime             |                            |                         |        | 388 years     |



$$FD = \sum \frac{ni}{Ni}$$

Yearly Damage = P \* Total Windy Days

#### In Process

- More Sea States and Different Seed Numbers
- Considering Bending Stiffness
- Modeling Lazy Wave Configuration for the cable

Future

• Using Irregular sea states

#### References

[1] Nasution, Fachri P., Svein Sævik, and Janne KØ Gjøsteen. "Fatigue analysis of copper conductor for offshore wind turbines by experimental and FE method." Energy Procedia 24 (2012): 271-280.

[2] de Alegría, Iñigo Martínez, et al. "Transmission alternatives for offshore electrical power." Renewable and sustainable energy reviews 13.5 (2009): 1027-1038.

[3] Green, Jim, et al. Electrical collection and transmission systems for offshore wind power. No. NREL/CP-500-41135. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2007.

[4] Jonkman, J., and W. Musial. "Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment." Contract 303.275 (2010): e3000.

[5] BERGE, S. 2006. Fatigue and Fracture Design of Marine Structures

[6] LARSEN, C. M. 2009. Marine Dynamics

[7] Georg E. Dieter, Mechanical Metallurgy, ISBN 0-07-100406-8, p 375-431

[8] NIST Monograph 177, Properties of copper and copper alloys at cryogenic temperatures, by N J. Simon,

E. S. Drexler and R. P. Reed, National Institute of Standards and Technology, 1992

[9] ASM Handbook vol. 2, Properties of Wrought Copper and Copper Alloys –C1100

[10] Karlsen, Stian, et al. "Dynamic deep water power cables." Proceedings of the 9th International Conference and Exhibition for Oil and gas resources development of the Russian Arctic and CIS continental shelf, RAO/CIS Offshore, St Petersburg. 2009.

[11] DNV-OSS-401, Offshore Service Specification, Technology Qualification Management, Det Norske Veritas, July 2006

[12] - DNV September 2012. Design of Offshore Wind Turbine Structures. DNV-OS-J101.

[13] Loos, Bart. "Operability limits based on vessel motions for submarine power cable installation." (2017).

[14] Huang, Wei, et al. "Fatigue analysis of the taut-wire mooring system applied for deep waters." China Ocean Engineering 25.3 (2011): 413.

[15] Qiao, Dongsheng, Jun Yan, and Jinping Ou. "Fatigue analysis of deepwater hybrid mooring line under corrosion effect." Polish Maritime Research 21.3 (2014): 68-76.



# **Thanks for Your Attention**

Dynamic Anaysis of Power Cable in FOWT

16 January 2020