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Figure: Offshore VSC connection platforms (approx. 26 000 tons) [Siemens, 2015]
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DRs are inherently devoid of the grid-forming capability of VSCs

WTs have been suggested as viable candidates to take over such duty

Change in WT controls:
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DRs are inherently devoid of the grid-forming capability of VSCs

WTs have been suggested as viable candidates to take over such duty

Change in WT controls: grid-following units → grid-forming units
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Figure: New offshore DR connection platform (approx. 9000 tons) [Siemens, 2015]
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Figure: WTk front-end (grid-/line-side) converter controls14 / 13
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U0 = 0.86 pu , ω0 = 1 pu , Q∗
T,k = 0
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