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Leading Edge Erosion

* Leading edge erosion is caused by raindrops
impacting the leading edge near to the tip
of the blade, where the local velocity can be
close to 100m/s (225mph)

* Itis abig problem for the industry (their
biggest on blades according to a survey
carried out among OEMs and owner
operators)

* It costs the industry in two ways:

* the aerodynamic performance
decreases as erosion gets worse

* Repairs need to be carried out
approximately every 5 years

* 108 turbines x 6 days at €100k per day for a
jack up rig is €65m in vessel hire, before lost
revenue and the cost of repairs has been
accounted for!
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Benefits of Higher Tip Speeds

If the speed limit of leading edge erosion is removed
then tip speeds could increase to 12o0m/s or more

* A 30% increase on current speeds!

A nacelle mass trend derived from a survey of
current nacelles has shown that the estimated
nacelle mass for a 20MW turbine would be:

* 1025tatgom/s
* 8agtati2om/s

* This would lead to a substantial decrease in
tower cost as well as nacelle cost

Jamieson et al [1] demonstrated a turbine CAPEX
reduction of 20% for a MW turbine when increasing
the tip speed and moving to a downwind rotor

Dykes et al [2] demonstrated a 5.5% reduction in
LCOE by moving from 8o m/s to 100m/s flexible
blade
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[1] Jamieson P (2009) Light Weight, High Tip Speed Rotors for Offshore. EWEC 2009, Stockholm.
[2] Dykes K, Platt A, Guo Y, Ning A, King R, Parsons T, Petch D, Veers P and Resor B (2014) Effect
of Tip Speed Constraints on the Optimised Design of a Wind Turbine, NREL TP-50000-61726



The LEFT (Leading Edge for Turbines) Project caTAPULT

* The LEFT project is a collaboration between:
* Radius Aerospace UK
* Performance Engineered Solutions Ltd
* The Offshore Renewable Energy Catapult

* Itaims to transfer the use of electroformed Ni-Co leading
edge protection from the aerospace industry to wind turbines

* The Ni-Co solution has demonstrated extremely good rain
erosion performance:

* Itlasts for 85 hours in the ORE Catapult rain erosion
rig at 173 m/s
* Typical solutions last for around 15 hours at 120 m/s

* However, it will be challenging to integrate with wind turbine
blades:

* The alloy has high relative stiffness compared to the
blade

* Lightning protection
* The LEFT project aims to address these issues




Adhesive Validation Methodology
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Global and Sub-Models




Fracture Mechanics Rig

* The test rig was designed and built by PES with fransverse
rig control using a Raspberry Pi developed by N i C TPF?
ORE Catapult L " :
. . vpr2 B ¢sz
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[3] and applies pure bending moments to the >
ends of the specimen | |
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Fracture Mechanics Testing
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Finite Element Modelling Approach
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* The experimental tests have been
modelled in ANSYS:

* SOLID185 elements for adhesive
and substrate

* INTER205 elements with bi-
linear cohesive zone model

« BEAM188 Beam elements
connect remote point at which
beam angular displacements are
applied to the substrate nodes

* The STP Adhesive proved very difficult
to model in mode 2 because of its very
low modulus
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Epoxy Adhesive Results
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Silane Terminated Polymer Adhesive Results
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Critical Load Case/ Position for Sub-Model
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Sub-Model Results: Epoxy Adhesive
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Sub-Model Results: STP Adhesive
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Conclusions

* A blade meshing tool has been developed which can
generate a global solid mesh of the blade and a detailed
solid mesh of the tile system

* A model chain has been developed which can accurately
predict the adhesive stresses in the Ni-Co tile system

* It canalso be used with more detailed models developed
from CAD as long as they occupy the same position in space
as the global blade mesh

* The next steps are:
* Produce a demonstrator of the leading edge system

* Investigate how the interface between tiles affects
the stress

* Look at certification
* Integrate the tile into the blade lightning system
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