Integration of STAS Turbine with plant flow model

Stefan Dankelman¹, Konstanze Kölle², Leif Erik Andersson³, Karl Merz²

¹Delft University of Technology (TUD), Delft, The Netherlands ²SINTEF Energy Research, Trondheim, Norway ³Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Introduction

- Wind turbines placed in the same wind power plant (WPP) interact with each other through aerodynamic and electrical coupling.
- Coordinated control of wind power plants should consider these interactions.
- The STAS framework [1] provides state-of-the-art turbine models including aeroelastic, electrical and control modules.
- Overall goal:

 $Holistic \ WPP \ model for \ model-based \ optimal \ control \ that \ balances \ the \ partly \ contradictory \ objectives, e.g. \ power \ production \ and \ load \ reduction.$

→ Integrate plant flow model with STAS Wind Turbines for WPP control.

STAS WPP [1]

A unified state-space model of a wind power plant, for analysis of system dynamics, optimization, and control.

STAS Wind Turbine (WT) [2]:

- Different modules as shown in the figure
- Nonlinear and linearized sets of equations
- Newton-Raphson solution for steady-state operating points

Exemplary STAS WPP with electrical grid and simple WPP controller [3]:

Results

Interface between STAS Turbine models and plant flow model:

- Plant flow model with simple turbine model provides the wind field and estimated power production for each turbine.
- STAS updates the power estimate considering the internal turbine states and control functions; and returns turbine settings.

Two-step simulation of 5-turbine WPP:

Inflow wind speed [m/s]	Power increase by yawing [%]	Change of blade root bending [%]	Change of tower base bending [%]
14	8.6	-1.5	13.1
12	6.7	3.1	11.2
10	7.1	0.6	12.3

- → Wake steering by yawing increases the power gain.
- → Mean bending moments are affected.
- → The turbine loading should be analysed in more detail (see Outlook).

Methodology

Plant flow model: FLORIS (FLOw Redirection and Induction in Steady State) [4]

- Initializes the incoming wind characteristics, dimensions of the turbines and the wind power plant layout.
- Maximizes the power production by wake steering, i.e. optimizing the yaw angles of all turbines.
- Outputs inflow wind field, estimated power, and yaw angle for each turbine.
- Internal turbine model based on tabularized power coefficients.

STAS Wind Turbine model:

- Linearized at different operation points: wind speed, power command
- Interpolation between operation points for each turbine based on the information provided by the plant flow model.

Simulation set-up:

- WPP layout: row of 5 turbines
- 10 MW turbines
- Yaw optimization tool FLORIS limited between 0 and 20 degrees.
- Gaussian wake model with wake growth based on turbulence intensity.
- Two steps: 1) Yaw optimization in FLORIS. 2) Linear interpolation of STAS models to calculate bending moments.

Outlook

This work investigated how the STAS Turbine models can be integrated with plant flow models.

Future work towards a holistic model of a wind power plant for model-based optimal control:

- Build parameter-varying turbine models covering wider operational range.
- Amend the measures for loading, e.g. caused by rotor periodicity and crosswind velocities.
- Analyse loads at relevant parts in the turbine for different scenarios.
- Reduce STAS Turbine models to relevant states for WPP control.
- Optimize WPP together with STAS Turbine model using measures of structural loading to trade off power production and load reduction.
- Investigate other plant flow models for integration with STAS WPP.

References

[1] Merz, K. STAS WPP code. https://github.com/SINTEF-Energy-Wind/STAS-WPP

[2] Merz, K. (2018). STAS Aeroelastic 1.0 - Theory Manual

[3] Merz, K. et al. An electromechanical model of the TotalControl reference wind power plant [4] Gebraad et al. (2016). Wind plant power optimization through yaw control using a

parametric model for wake effects - a CFD simulation study. Wind Energy, 19 (1), 95–114.