SINTEF Digital, Dept. of Mathematics and Cybernetics, Trondheim, Norway

1. Introduction

Abstract
SpliPy is a pure python library for the creation, evaluation and

manipulation of B-spline and NURBS geometries. It supports n-
variate splines of any dimension, but emphasis is made on the use
of curves, surfaces and volumes. The library is designed primar-
ily for analysis use, and therefore allows fine-grained control over
many aspects which is not possible to achieve with conventional
CAD tools.

Keywords: NURBS, B-splines, CAD, Interpolation, Approximation

The package is distributed through the Python Package Index
(PyPl) and can be installed by typing

[> pip install splipy

into the commandline; or anaconda promt

The current SpliPy release version is 1.3

2. B-splines

Given a knot vector of nondecreasing knots = = [}, &, &, ...{napya
we define the set of n basisis functions by

_ =&
£i+p7€i

and special-casing for p = 0-functions

Eivpr1 — &

fi+p+1 - §i+1

Nip(6) Nip-1(§) + Nij1p-1(8), (1)

By creating a tensor product of two or three univariate splines
weighted by their controlpoints, we are able to create surface and
solid representations.

z

¥ FEno

X

Fig 1: A trivariate NURBS solid mapping

SpliPy - Spline modelling in Python

Kjetil Andre Johannessen, Eivind Fonn

SINTEF
@ NTNU

Kjetil.Johannessen@sintef.no, Eivind.Fonn@sintef.no

3. Structure

The class follows a simple structure with a Curve, Surface and Vol-
ume class which all inherit from a parent SplineObject class. Corre-
sponding to each of these primtitives, we collect a number of gen-
erative methods in so-called factory classes.

SplineObject
/' - i
T T TCreates

Fig 2: Primary classes and modules

4. Examples

Adaptive curve fitting for parametric curves. Uses a posteriori error
estimate to refine where needed

from splipy import *
from numpy import pi,cos,sin,transpose,array

def trefoil(u):
x=[45xsin(u)- 30%cos(2*u)+113*sin(2%u)-11%cos (3%u)+27*sin(3*u),
41xcos(u)-18*sin(u)- 83*cos(2*u)- 83*sin(2*u)-11*cos(3*u)+27*sin(3*u),
36xcos (u) +27*sin(u) -113*cos (2*u) + 30*sin(2*u)+11*cos(3*u)-27*sin(3*u)]
return transpose(array(x))

knot_curve = curve_factory.fit(trefoil, 0, 2xpi)

Sweep operations where one curve is swept along another

the square is scaled by a factor 15
square = 15%curve_factory.n_gon(4)
srf = surface_factory.sweep(knot_curve, square)

Fig 3: Swept surface

17th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’ 2020, 15-17 January 2020, Trondheim, Norway

4.1 Wind turbine blade
/ Y

\\ -
“O-mesh” 2D plane “Flower mesh”
sy ST < N \ \\) 0
~ =t < B i !
! & {) \E'] ‘ =

//7/

Fig 5: Line-to-volume construction of a full wind-turbine blade mesh.

Integration with Nutils
The package contains functions for converting to Nutils objects.

from splipy import *
from nutils import *

surf = surface_factory.disc(r=2, type='square')
surf = surf.rebuild(p=3, n=20)

domain, geom = utils.nutils.splipy_to_nutils(surf)

ns = function.Namespace ()

ns.x = geom

ns.phi = domain.basis('spline', degree=2)

A = domain.integrate(ns.eval_ij('phi_i,k phi_j,k'), degree=3)
b = domain.integrate(ns.eval_i('phi_i sin(7 x_0)'), degree=3)
cons = domain.boundary.project(0, ns.phi, ns.x, degree=3)
ns.w = A.solve(b, constrain=cons)

Fig 6: Nutilg

o SpliPy allows for fast scriptable isogeometric mesh generation

e It is especially suited for smooth lofted geometires, such as tur-
bine blades

e Read more on website: https://github.com/sintefmath/splipy

Disclaimer: SpliPy does not contain a graphical user interface. All figures produced on this poster have been created
using 3rd party visualizers. Splipy is to be considered an API ready to be integrated into other custom applications.

