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Introduction: The OpenFAST Multi-Physics Engineering Tool

e OpenFAST is DOE/NREL’s premier open-source
wind turbine multi-physics engineering tool

 FAST has undergone a major
restructuring, w/ a new
modularization framework (v8)

 Framework originally designed

w/ intent of enabling full-system

linearization, but functionality
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Background: Why Linearize?

e OpenFAST primary used for nonlinear time-domain Module
standards-based load analysis (ultimate & fatigue)

e Linearization is about understanding:

o Useful for eigenanalysis, controls design, X = X (x,z u t)
stability analysis, gradients for optimization,

& development of reduced-order models 0=Z (X,Z Ut
* Prior focus:

Wuh

# 0

y=Y(x,z,ut

o Structuring source code to enable linearization

o Developing general approach to linearizing mesh-mapping ‘
w/n module-to-module coupling relationships, inc. rotations U = u| + AU etc.
op

o Linearizing core (but not all) features of InflowWind, ServoDyn,
ElastoDyn, BeamDyn, & AeroDyn modules & their coupling ‘

o Verifying implementation AX = AAX + BAu

e Recent work (presented @ IOWTC 2018): Ay =CAx+ DA
o Linearizing HydroDyn, & MAP++, & coupling i

o State-space implementation of wave-excitation with

& wave-radiation loads A {GX X [GZ }1 0Z }

etc.
e This work — Verifying implementation for FOWT OX 0L 07| OX
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Background: State-Space-Based . Wave Radiation

 Wave-radiation “memory effect” t
accou nted for In HydroDyn by thfm —>> |:Rdtn :_I KRdtn (t_T)thfm (T)dT —> |:Rdtn
0
direct time-domain (numerical)
convolution

° I -
Linear ?tate, >pate (SS) . Xeatn = Pratn Xrain + BratnGpiim E
approximation: Upim —> > P

I:Rdtn = CRdtn XRdtn

o SS matrices derived from
SS_Fitting pre-processor using
4 system-ID approaches
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Background: State-Space-Based . \WWave Excitation

* First-order wave-excitation loads
accounted for in HydroDyn by
inverse Fourier transform

—> |:Exctn

¢ —»

 Linear SS approximation:

o SS matrices derived from extension ’
to SS_Fitting pre-processor using
system-ID approach

—> I:Exctn

o Requires prediction of wave
elevation time t_ into future to
address noncausality i.e. £ —»

S (t)=4(t+t,)

10 5 Impulse Response Functions: original and causalized

XExtn - AExtn XExtn + BExtné/c
F.. =C_. X

Extn — “~Extn“Extn

—> FExctn
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Background: Final Matrix Assembly

InflowWind (IfW) ElastoDyn (ED) Full System [ 4™ " Ay™)

Ay('fw) — D(”W)AU(”W) A)‘((ED) — A(ED)AX(ED) + B(ED)AU(ED) AU(SND) Ay(SND)

Ay(ED) ZC(ED)AX(ED) + D(ED)AU(ED) AX(ED) AU(ED) Ay(ED)

ServoDyn (SrvD) jx = éjx + iju s ix®) Aut =4 4,080) Ay =1 4y

Ay(S) — pEnP) 4,(57P) BeamDyn (BD) y=Cax+DAu (D) (%0 4y
Ax(BP) _ A(BD) 4, (BD) | p(BD) 4 (BD) » il

AeroDyn (AD) BD BD) ,.(BD BD) , (BD A Ay(HD)

e Yy Ay( ) _ C( )AX( ) + D( )AU( ) A(ED) 0 0 AU(MAP) Ay(MAP)

Ay1#0) _ p(#0) 4, (#0)

HydroDyn (HD)

MAP++ (MAP) HD HD HD HD HD 0 0 AlHP)

x(HD) _ A(HD) 4. (HD)  (HD) 4 (HD) _ _

Ay M) = DM AT ] (D) _ (D) g (D) | (D) g (D o 0 0

0 0 0

Glue Code 0o0B®™ 0 0 0 o0 cE) g 0

-1
Y U oo o B*® 0o o ofg,] % 0 c® g
=— Adu+— 4 .

ol |, op g 00 O o o BM" o Pl 0 0 0

0 o c
0 0 0

etc.

e D-matrices (included in G) impact
all matrices of coupled system, highlighting important role of direct feedthrough

e While AED) contains mass, stiffness, & damping of ElastoDyn structural model
only, full-system A contains mass, stiffness, & damping associated w/ full-system
coupled aero-hydro-servo-elastics, including FOWT hydrostatics, radiation
damping, drag, added mass, & mooring restoring
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Results: Campbell Diagram of NREL 5-MW Turbine Atop OC3-
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e Modules enabled: ElastoDyn, ServoDyn, HydroDyn, & MAP++

e Approach (for each rotor speed): Find periodic steady-state OP = Linearize to find
A matrix 2 MBC - Azimuth-average = Eigenanalysis = Extract freq.s & damping
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Results: Campbell Diagram of NREL 5-MW Turbine Atop OC3-
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e Modules enabled: ElastoDyn, ServoDyn, HydroDyn, MAP++, AeroDyn, & InflowWind

e Approach (for each wind speed): Define torque & blade pitch = Find periodic steady-
state OP = Linearize to find A matrix 2 MBC = Azimuth-average = Eigenanalysis 2
Extract freq.s & damping
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Results: Time Series Comparison.of Nonlinear & Linear Models
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 Modules enabled: ElastoDyn, ServoDyn, HydroDyn, & MAP++
e Nonlinear approach (for each sea state): Time-domain simulation w/ waves

* Linear approach (for each sea state): Find steady-state OP = Linearize to find A, B, C, D
matrices = Integrate in time w/ wave-elevation input derived from nonlinear solution
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Conclusions & Future Work

e Conclusions:

o Linearization of underlying nonlinear wind-system equations advantageous
to:

— Understand system response
— Exploit well-established methods/tools for analyzing linear systems

o Linearization functionality has been expanded to FOWT w/n OpenFAST
o Verification results:
— Good agreement in natural frequencies between OpenFAST & FAST v7

— Damping differences impacted by trim solution, frozen wake, perturbation
size on viscous damping, wave-radiation damping

— Nonlinear versus linear response shows impact of structural nonlinearites
for more severe sea states
e Future work:

o Improved OP through static-equilibrium, steady-state, or periodic steady-state
determination, including trim
o Eigenmode automation & visualization
o Linearization functionality for:
— Other important features (e.g. unsteady aerodynamics of AeroDyn)
— Other offshore functionality (SubDyn, etc.)
— New features as they are developed
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Approach & Methods: Operating-Point. Determination

e A linear model of a nonlinear u=u|_+Au formostvariables
system is only valid in local vicinity A=4| 44 forrotations
Z

of an operating point (OP) with ., e

e Current implementation allows OP
to be set by given initial conditions
(time zero) or a given times in
nonlinear time-solution

X
ye=A5Y y
Z Z

5S4\
v
<

e Note about rotations in 3D:

o Rotations don’t reside in a linear space

o FAST framework stores module
inputs/outputs for 3D rotations I s selst ot
using 3)(3 DCIVIS (A) e —AEZ(A9§+A2+AHZZ + 40, A0, 1+ 405 + A60; + 40 -1

o Linearized rotational e N C I e
parameters taken to be 3

small-angle rotations about
global X, Y, & Z(AQ )
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Approach & Methods

Module Linear Features

SEN ]IV W e Structural
(ED) dynamics of:
OBlades
ODrivetrain
ONacelle
OoTower
OPlatform

States (x, 2)

e Structural degrees-of-
freedom (DOFs) & their
15t time derivatives
(continuous states)

Inputs (u)

e Applied loads along
blades & tower

e Applied loads on hub,
nacelle, & platform

¢ Blade-pitch-angle
command

¢ Nacelle-yaw moment

e Generator torque

Outputs (y)

e Motions along blades &
tower

e Motions of hub, nacelle,
& platform

e Nacelle-yaw angle & rate

e Generator speed

e User-selected structural
outputs (motions &/or
loads)

Jacobian Calc.

e Numerical
central-
difference
perturbation
technique*

WL IV @ \Wave excitation

e State-space-based

e Motions of platform

e Hydrodynamic applied

e Analytical for

(HD) e Wave-radiation wave-excitation e Wave-elevation loads along platform state equations
added mass (continuous states) disturbance e User-selected e Numerical
e Wave-radiation |e State-space-based hydrodynamic outputs central-
damping radiation (continuous difference
e Hydrostatic states) perturbation
restoring technique™ for
e Viscous drag output equations
MAP++ CHWV/[eTelgol:s e Mooring line tensions | e Displacements of e Tensions at fairleads e Numerical
(MAP) restoring (constraint states) fairleads e User-selected mooring central-
¢ Positions of connect outputs difference
nodes (constraint perturbation
states) technique*

*Numerical central
-difference perturbation
technique (see paper for

treatment of 3D rotations)

oX

X(x|O +Ax,ul - f )—X(x| —Ax,u|_ | )
p op * lop op op " lop

etc.

OX |op

2 AX
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Approach & Methods

Structural Hydrodynamic O = U (u1 y)

Discretization Discretization

Module inputs & outputs
residing on spatial boundaries

|
use a mesh, consisting of: :
| ouU ouU
o Nodes & elements (nodal | O0=—| Au+—1| Ay
connectivity) | o op op
o Nodal reference locations : with
(position & orientation) :
o One or more nodal fields,
including motion, load, &/or _| 0o o au (W) . . |
scalar quantities aigtAP)
_ , (™) 010 0 0 0 0
Mesh-to-mesh mappings involve: :
pp g . AU(SND) 00 1 aU(ED) aU(ED) au(ED) aU(ED)
o Mapping search — Nearest () aa®  ag®®  atP)  pg(MeP)
1 (BD) (BD)
neighbors are found A= 40E0) aa_l; _lo 0 o alf(so) alf(AD) 0 0
o Mapping transfer — Nodal fields AuAo) P o o o)
ouU
are transferred o) 000 0 5 0 0
Mapping transfers & other AuM) v oo o . U (HP) .
module-to-module input-output o)
: . : 000 O 0 0 |
coupling relationships have been - Hlop

. . . etc.
linearized analytically
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