Experimental Investigation of a Downwind Coned Wind Turbine Rotor under Yawed Conditions

Christian Schulz

Supported by Stefan Netzband Klaus Wieczorek Moustafa Abdel-Maksoud

Fluiddynamik schiffstheorie Technische Universität Hamburg-Harburg christian.schulz@tuhh.de Institute for Fluid Dynamics and Ship Theory Hamburg University of Technology

ΜΟΤΙVΑΤΙΟΝ

Particular needs for new experimental investigations

- Only few investigations at higher yaw angles
- Focus on power and thrust

Support of new wind turbine concepts

- Free-yawing wind turbines
- Self-aligning floating offshore wind turbines (SFOWT)
 - Higher yaw angle
 - o Self-aligning dependent on yaw moment

Detailed investigation of yaw moment and power up to 55° yaw angle

OVERVIEW: EXPERIMENTAL INVESTIGATION OF A DOWNWIND CONED ROTOR

Experimental Investigation of a Downwind Coned Rotor

- **1** Motivation
- 2 Background
- **3** Wind tunnel model and technology
- 4 Results
- **5** Conclusion
- 6 Invitation to simulate

BACKGROUND: ORIGIN OF THE YAW MOMENT

1. Lower induction at the upwind side

2. Higher inflow angle on the upwind side

[W. HAANS, WIND TURBINE AERODYNAMICS IN YAW – UNRAVELLING THE MEASURED ROTOR WAKE (SLIGHTLY MODIFIED)]

BACKGROUND: PREVIOUS EXPERIMENTS

Previous experiments of under yawed conditions

- MEXICO
- NREL UAE Phase VI
- Sant and Haans, TU Delft

- Only very few measured the yaw moment Downwind coned rotor was only considered by NREL
- Extremely high cone angle or teeter dampers used, strong tower effects

aerodyn SCD 6MW **9° downwind cone**

[[]AERODYN ENGENEERING]

[M. HAND, D. SIMMS, S. LARWOOD: Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns]

OVERVIEW: EXPERIMENTAL INVESTIGATION OF A DOWNWIND CONED ROTOR

Experimental Investigation of a Downwind Coned Rotor

- **1** Motivation
- 2 Background
- **3** Wind tunnel model and technology
- 4 Results
- **5** Conclusion
- 6 Invitation to simulate

WIND TUNNEL AT TUHH

TUHH Wind Tunnel		Operational Modes:
Max. wind speed:	40 m/s	closed circuit (Göttingen – mode)
Turbulence degree:	< 0.2%	open circuit (Eiffel – mode)
Measuring section (L X B X T)	5 x 3 x 2 m	integrated 6-component balance

WIND TUNNEL MODEL: OVERVIEW

TUHH Experimental Wind Turbine				
Rated power	130 W			
Rotor diameter	0.925 m			
Number of blades	2			
Downwind cone angle	5°			
Rated wind speed	9.3 m/s			
Rated rotational speed	1200 RPM			
Wind tunnel size	2 x 3 m			
Blockage ratio	11.2 %			
Sensor	6C - balance			

WIND TUNNEL MODEL: BLADE DESIGN

Design goals

- Validation case for simulations
 - Low Reynolds number dependency
 - o No Stall
 - o Availability of measurement data for airfoil
 - High power coefficient
 - Low blade deformation

Properties

- SD7062, 14% thickness (Experimental data available for Re 100,000 and 200,000)
- Nearly constant Reynolds number of 150,000 at 1200 RPM

16.01.2019

WIND TUNNEL MODEL: BLADE MANUFACTURING AND QUALITY

Choice of material driven by

- Manufacturing accuray
- High interia forces
 - Acceleration: 400 g at 50 % of radius
 - Induce bending moments due to cone angle

Rigid and lightweight structure needed

- o Prepreg carbon fiber
- o Shear web
- Hard resistance foam core
- \circ $\;$ High risk of undesired twisting $\;$

3D scan performed

WIND TUNNEL MODEL: NACELLE, SENSOR AND COORDINATE SYSTEM

Components and sensor

- Generator
- Slip ring and main bearings
- Hub
- 6 component force/moment sensor
 - Uncertainty below 2% in torque and 1% in thrust at rated conditions
- Coordinate system for measurements

OVERVIEW: EXPERIMENTAL INVESTIGATION OF A DOWNWIND CONED ROTOR

Experimental Investigation of a Downwind Coned Rotor

- **1** Motivation
- 2 Background
- **3** Wind tunnel model and technology
- 4 Results
- **5** Conclusion
- 6 Invitation to simulate

RESULTS: POWER AND THRUST COEFFICIENTS (MEAN VALUES)

Results

- Power coefficient of 0.4
- Very smooth curves for power coefficient and thurst
- Nearly symmetric behaviour
- $cos^2\gamma$ fits well up to 30°
- Strong deviation at higher yaw angles

RESULTS: YAW MOMENT AND LATERAL FORCE (MEAN VALUES)

Results

- Yaw moment
- Maximum yaw moment at 40°
- o Smooth curve
- Slight deviation to symmetric copy
- Zero crossing nearly exactly at 0°
- Low uncertainty in yaw angle
- Lateral force
- Slight offset in Lateral force (ca. 1% of thrust)
- Mainly caused by nacelle drag force

RESULTS: REPEATABILITY OF TORQUE AND THRUST

- Repeatability checked on three different days
- Cables were moved
- Deviation between repetitions below 1% in C_p and 0.5% in C_t at rated conditions

RESULTS: CRITICAL ISSUES

Aspects that need to be considered

- Small offset in lateral force
- Yaw moment deviated by nacelle drag force and unknown lever arm
- Vibration induced periodic forces up to 2% of thrust
- Deviations in rotational speed up to 1% (considerd in C_p calculation)
- Low pass filter was applied (40 Hz corner frequency)
- Small deviations due to cables' stiffness

No serious issues were observed

OVERVIEW: EXPERIMENTAL INVESTIGATION OF A DOWNWIND CONED ROTOR

Experimental Investigation of a Downwind Coned Rotor

- **1** Motivation
- 2 Background
- **3** Wind tunnel model and technology
- 4 Results
- **5** Conclusion
- 6 Invitation to simulate

CONCLUSION

Conclusion

- High repeatability and low measurement uncertainty were achieved
- $cos^{x}\gamma$ approach is not suitable for higher yaw angles
- Yaw moment increases up to 40°
- Rare data for the yaw moment is now available for validation
 - Validity of Blade Element Momentum Method for Self-aligning Floating Wind Turbines can be investigated

INVITATION TO SIMULATE

Every researcher is invited to validate his tool with the presented experiment!

- A detailed description will we published in the **conference proceedings** (if paper will be accepted)
- Data sets or CAD models may be handed out on request
- Publications welcome

Acknowledgement

The research project is financially supported by the BMWi

Federal Ministry for Economic Affairs and Energy

THANK YOU FOR YOUR ATTENTION

Christian W. Schulz

