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C,: Added mass coefficient; C;: Viscous drag coefficient
Keulegan-Carpenter (KC) number: KC = ? (A: amplitude of motion; D: diameter of typical component)

 The effects of free water surface and of KC number on hydrodynamic coefficients of a
semi-sub model predicted should be systematically investigated by LES with VOF .
* Accuracy of predicted hydrodynamic coefficients by CFD should be improved.




Objectives

1. To improve accuracy of the predicted hydrodynamic
coefficients by Richardson extrapolation method.

2. To study the effect of KC number and frequency on the
hydrodynamic coefficients.

3. To investigate the importance of the free water surface on
evaluation of hydrodynamic coefficients by LES with VOF.



Water tank tests

0 Forced vibration tests in the horizontal and vertical directions
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* Definition of hydrodynamic coefficients Ca and Cd

Measured hydrodynamic force
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Large eddy simulation (LES) with volume of fluid (VOF)) .

L Governing equation O Continuity equation for the
our 0 volume fraction of water
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Symmetry
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Computational domain

S.N.Zhang, T.Ishihara : Numerical study of hydrodynamic coefficients of multiple heave
plates by large eddy simulations with volume of fluid method, Ocean Engineering, Vol.163,

pp.583-598, 2018.
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Numerical simulation by grid refinement
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The accuracy of predicted Cd by using grid refinement is not enough.




Richardson Extrapolation Method 7

O Richardson Extrapolation Method
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Fine grid is required to accurately simulate the vortex shedding.

e Richardson Extrapolation Method on the finest grid is applied and validated.




Effect of grid refinement
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 The predicted hydrodynamic coefficients by using LES with VOF method agree
well with the experimental data when Richardson extrapolation is performed.




Effect of KC number and wave frequency 9
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 Potential theory and database have limited accuracy for Ca and Cd, while LES model with
VOF can accurately predict the Ca and Cd for different KC numbers and wave frequencies.




Effect of free water surface

] In the horizontal direction
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* The free water surface should be included to accurately predict hydrodynamic coefficients

in the horizontal direction and can be captured by using LES with VOF.




Effect of free water surface 1

O In the vertical direction ,
With free water surface ~ W/O free water surface
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e The predicted Ca and Cd with and without free surface in the vertical direction
coincide well with those from the water tank test, because the free surface has a
limited effect on Ca and Cd in the vertical direction for the deep draft model.




Prediction of dynamic response

See the poster No.37

The predicted dynamic responses in
different wave heights by proposed
model show good agreement with
those from the water tank tests.

Prediction of dynamic response of a semi-submersible floating offshore

wind turbine by KC dependent hydrodynamic coefficients
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Conclusions

1. The grid refinement can improve accuracy by capturing the
vortex shedding near the model and the predicted drag
coefficients by Richardson extrapolation method show good
agreement with those from the water tank test.

2. LES model with VOF can accurately predict the KC number
effect on the hydrodynamic coefficients in the horizontal and
vertical directions, while potential theory and database have
limited accuracy.

3. The hydrodynamic coefficients in the horizontal direction by
LES with VOF show good agreement with the experimental
data, while those predicted by LES without the free surface
show significant differences.



Thank you for your attention!

This research is carried out as a part of the Fukushima floating
offshore wind farm demonstration project funded by Ministry of
Economy, Trade and Industry.
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