Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions

Knowledge for Tomorrow

Dipl.-Ing. Janto Gundlach

Dr.-Ing. Yves Govers Institute of Aeroelasticity German Aerospace Center (DLR), Göttingen

Trondheim – EERA DeepWind'19 January 17, 2019

Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions

Content

- 1 Context of modal test campaign
- 2 Test setups and realisation
- 3 Assorted results
- 4 Summary and future work

SmartBlades2 T1 rotor blades

Rotor blade properties

- built by DLR
- geometric coupling induced by prebend and sweep
- demo length scale of 20m
- intended to reduce overall loading

project partners

Main project goals

- demonstration of technology in operational tests
- validation of numerical tools

pictures: NREL

SmartBlades2 T1 rotor blades

Rotor blade properties

- built by DLR
- geometric coupling induced by prebend and sweep
- demo length scale of 20m
- intended to reduce overall loading

Operational tests on CART3, Boulder, Colorado (blade #2-blade #4)

- varying test conditions (cross wind, start-up, shutdown)
- multitude of measurements
 - met mast
 - aero probes
 - Lidar on nacelle
 - SSB BladeVision
 - strain gauges
 - DIC

Main project goals

- demonstration of technology in operational tests
- validation of numerical tools

Related structural testing

Certification of blade #1 according to IEC61400-23

- static extreme loads
 - flapwise bending, edgewise bending, torsion; before and after fatigue test
- dynamic high-cycle fatigue test

Bend-twist coupled blades

- coupled mode-shapes are predicted with uncertainty
- affects power production, loading, flutter stability

pictures: IWES Bremerhaven

structural dynamic validation of FE shell and beam models

modal tests

- free-free boundary condition (4 blades)
 - deviations from manufacturing
- at the test rig (blade #1)
 - very high sensor density
 - larger deformations

- ideal database for FE model update

Process of finishing

Finish of rotor blades

- Removal of remains from previous manufacturing steps
- installing blade root connection
- additional layers of lay-up laminate
- colouring the blade
- approximated mass increase: 103kg

Mass of individual rotor blades

	mass in kg
blade #1	1702
w/o finish	1795
blade #2	1971
blade #3	1892
blade #4	1917

unfinished blade

Overview of test campaign

	blade #1	blade #2	blade #3	blade #4
free (DLR)	Х	Х	Х	
free w/ finish (NREL)		Х	х	х
test rig (IWES)	Х			

Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions

Content

1 Context of modal test campaign

2 Test setups and realisation

Comparison of test scenarios

Sensor distribution

Modal testing procedure

3 Assorted results

4 Summary and future work

Comparison of test scenarios

	feasibility	aspects of validation
free-free	 instrumentation and excitation on ground suspension system replaces hub connection low test site requirements less than two days of 	 fewest mass loading "blade only"
test rig	 instrumentation and excitation in heights effort of blade attachment testing of non-linear 	 resemblance to hub connection compliance of test rig higher force input possible behaviour

DLF

Sensor distribution

free-free

- equidistant spacing along length and chord axis
- edgewise motion captured by sensors on leading edge
- 3-4 instrumented cross-sections on suction side

clamped to test rig

- equidistant spacing along length on girder, equidistantly to leading and trailing edge
- 15 instrumented cross-sections on suction side
- in total 288 acceleration signals

high sensor density for validation purpose

Sensor distribution

free-free

- equidistant spacing along length and chord axis
- edgewise motion captured by sensors on leading edge
- 3-4 instrumented cross-sections on suction side

clamped to test rig

- equidistant spacing along length on girder, equidistantly to leading and trailing edge
- 15 instrumented cross-sections on suction side
- in total 288 acceleration signals

high sensor density for validation purpose

AutoMAC from FE model

Modal testing procedure

Sequence of operations

- 1 hammer/shaker excitation
- 2 data acquisition and signal generation
- 3 signal processing
- 4 modal analysis and correlation

impact hammer (free-free)

- soft tip, 10 averages
- 8 excitation points on leading edge, trailing edge, girder, blade shell
- huge windows (rigid body modes)

electrodynamic shaker (test rig)

- slow-paced logarithmic sine upsweeps (0.5 oct/min)
- different amplitude levels up to 800N
- multi-point excitation flapwise
- attachment built from mixed adhesive

Modal testing procedure

Sequence of operations

- 1 hammer/shaker excitation
- 2 data acquisition and signal generation
- 3 signal processing
- 4 modal analysis and correlation

time data of sine sweep

Modal testing procedure

Sequence of operations

- 1 hammer/shaker excitation
- 2 data acquisition and signal generation
- **3** signal processing
- 4 modal analysis and correlation

frequency response functions

Modal testing procedure

Sequence of operations

- 1 hammer/shaker excitation
- 2 data acquisition and signal generation
- 3 signal processing
- 4 modal analysis and correlation

stabilisation diagram from identification algorithm

Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions

Content

- 1 Context of modal test campaign
- 2 Test setups and realisation
- 3 Assorted results
 - Overview of mode shapes Correlation with FE model Impact of finishing process Non-linearity study

4 Summary and future work

Overview of mode shapes from free-free test (blade #1)

no.	mode shape	f in Hz	D in %
1	<u>rigid body heave</u>	0.74	3.62
2	rigid body roll	0.86	2.42
3	rigid body pitch	0.99	4.03
4	1. bending flapwise	4.80	0.23
5	<u>1. breathing mode</u>	7.74	0.61
6	1. bending edgewise	10.13	0.43
7	2. bending flapwise	11.99	0.43
8	2. breathing mode	14.48	0.56
9	<u>1. torsion</u>	16.85	1.25
10	3. bending flapwise	20.90	0.66
11	3. breathing mode	22.20	0.50
12	2. bending edgewise	27.15	0.57
13	2. torsion	27.98	0.97

Overview of mode shapes from blade #1 being clamped

no.	mode shape	f in Hz	D in %
1	<u>1. bending flapwise</u>	2.20	0.35
2	1. bending edgewise	3.07	0.31
3	2. bending flapwise	6.85	0.28
4	lateral test rig mode	7.26	0.58
5	2. bending edgewise + 1. breathing	9.74	0.40
6	2. bending edgewise	10.88	0.31
7	2. bending edgewise + 2. breathing	11.95	0.63
8	3. bending flapwise	13.58	0.34
9	1. breathing mode	17.27	0.44
10	<u>1. torsion</u>	18.73	0.46

Correlation with FE model (test rig)

Correlation with FE model (test rig)

Impact of finishing process

mode no.	mode description	eigenfrequency in Hz		diff. in %	modal damping in %		diff. in %
		w/o finish	w/ finish		w/o finish	w/ finish	
1	rigid body heave	0.75	0.70	-6.7	2.86	2.53	-11.5
2	rigid body roll	0.86	0.84	-1.7	2.27	2.51	10.6
3	rigid body pitch	1.04	0.98	-5.8	3.90	3.19	-18.2
4	1 st bend. flapwise	4.78	4.72	-1.3	0.24	0.26	8.3
5	1 st bend. edgewise	10.29	9.81	-4.7	0.31	0.38	22.6
6	2 nd bend. flapwise	11.99	11.87	-1.0	0.38	0.23	-39.5
7	1 st torsion	17.24	17.14	-0.6	0.88	0.56	-36.4
8	3 rd bend. flapwise	21.00	20.58	-2.0	0.45	0.36	-20.0
9	2 nd bend. edgewise	27.86	26.67	-4.3	0.55	0.45	-18.2
10	2 nd torsion	28.14	28.69	2.0	0.74	0.47	-36.5

averaged eigenfrequencies and damping

Impact of finishing process

- blade #1: high damping and low frequencies
- flap modes (no. 4,6,8) insensitive to frequency variations

Impact of finishing process

- smaller deviations in both frequency and damping
- some major changes in damping for blade #2 (no. 5,10)

Impact of finishing process

comparison of mode shapes

- correlation in higher modes only for finished data set
- mode shapes are affected significantly

Non-linearity study

Non-linearity study

Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions

Content

- 1 Context of modal test campaign
- 2 Test setups and realisation
- 3 Assorted results
- 4 Summary and future work

Summary and future work

Design and realisation of high-resolution modal tests in different boundary conditions

- free-free
 - time-efficient test option
 - finished vs. unfinished blades
 - reduction of eigenfrequencies
 - notable impact on mode shapes
- clamped to test rig
 - costly test option with resemblance to operation
 - realisation of larger flapwise deformations
 - insensitive eigenfrequencies but increase of damping
 - beneficial for critical load cases and aeroelastic stability

Summary and future work

- methodology for computational model updating of rotor blades
- modal identification incorporating load frames
- modal identification by using strain data

Thank you for your attention!

Supported by:

on the basis of a decision by the German Bundestag

Federal Ministry for Economic Affairs and Energy

Janto Gundlach janto.gundlach@dlr.de Tel.: +49 551 709-2172 Yves Govers <u>yves.govers@dlr.de</u> Tel.: +49 551 709-2288

DLR

