Motivation 00 Modelling 00000 Case Study and Results 0000

Conclusions and Future Work

References O

# How does risk aversion shape overplanting in the design of offshore wind farms?

Esteve Borràs Mora<sup>1,2</sup> James Spelling <sup>2</sup> Adriaan H. van der Weijde <sup>3</sup>

<sup>1</sup>Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE), University of Edinburgh Edinburgh, EH9 3JL, UK

> <sup>2</sup>EDF Energy R&D UK Centre Interchange, 81-85 Station Road, Croydon, CR0 2AJ, UK

 $^3$ University of Edinburgh School of Engineering and the Alan Turing Institute Faraday Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3DW, UK

EERA DeepWind'19 Trondheim, 16-18 January 2019







Motivation 00 Modelling 00000 Case Study and Results 0000

Conclusions and Future Work O References O

### Outline



### 2 Modelling

- Offshore Wind Cost Modelling Tool
- Factors Affecting Overplanting
- Modelling of Overplanting
- Modelling Risk Aversion

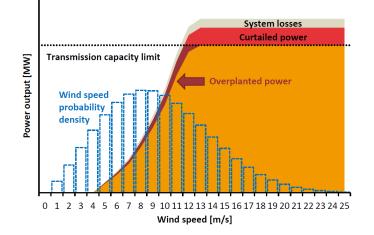
### Case Study and Results

- Case Study
- Deterministic Results
- Local Sensitivity Analysis
- Stochastic Results

Conclusions and Future Work






| Motivation |  |
|------------|--|
| •0         |  |

Modelling 00000 Case Study and Results

Conclusions and Future Work

### Motivation

- Farms subjected to a maximum export capacity agreed with the TSO
- Generators can export up to their contracted maximum export capacity
- Majority of the time offshore wind farms are not generating at full power
- Can overplanting result in better overall economics despite power output being curtailed at generations' peaks?



[Wolter et al. 2016]

#### Overplanting

Over installing the offshore wind capacity to the fixed electrical infrastructure





Motivation • Overplanting Studies Modelling 00000 Case Study and Results 0000

Conclusions and Future Work

References O

Overplanting Studies

Dogger Bank Forewind UK [Forewind 2012]

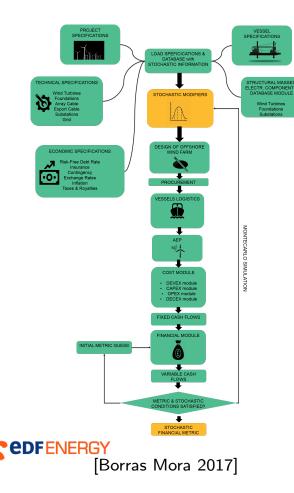
Connection Offer Policy & Process CER Ireland [Brid ODonovan 2011] [Forewind 2012

Round 3 Offshore Wind National Grid UK [Grid 2008] Decision on Installed Capacity Cap CER Ireland [Morris 2014]

Academic Literature [Mcinerney and Bunn 2017]

> Wind Farm Zone Borssele TenneT Netherlands [TenneT 2015]






| Motivation         | Modelling      |
|--------------------|----------------|
| 00                 | 0000           |
| Offshore Wind Cost | Modelling Tool |

Case Study and Results 0000

Conclusions and Future Work O References O

## Offshore Wind Cost Modelling Tool



### Characteristics

- Aim : rapidly evaluate the financial performance of a farm
- Inputs : project specifications, technology choices and market trends
- **Outputs** : financial metrics based on LCOE
- **Structure** : 4 main modules Design, Cost, Financial and Stochastic
- Stochastic Framework: Quantitative uncertainty management, Double loop Monte Carlo Simulation - inner loop within AEP



Motivation

Modelling ○●○○○ Case Study and Results

Conclusions and Future Work O

References O

Factors Affecting Overplanting

# Factors Affecting Overplanting





#### Factors

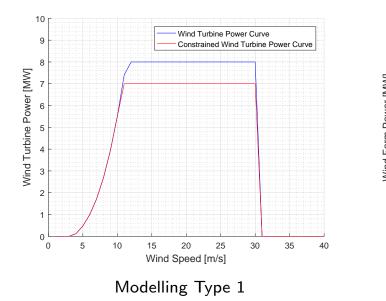
- Ratio of wind turbine expenditure to electrical infrastructure
- Wind speed distribution
- Wind turbine availability
- Inter-array cable availability
- Wake effects
- Electrical losses
- Degradation factor

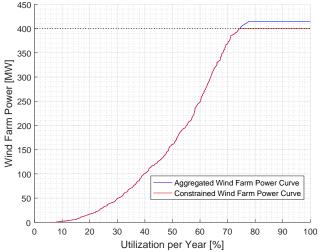




Motivation OO

Modelling

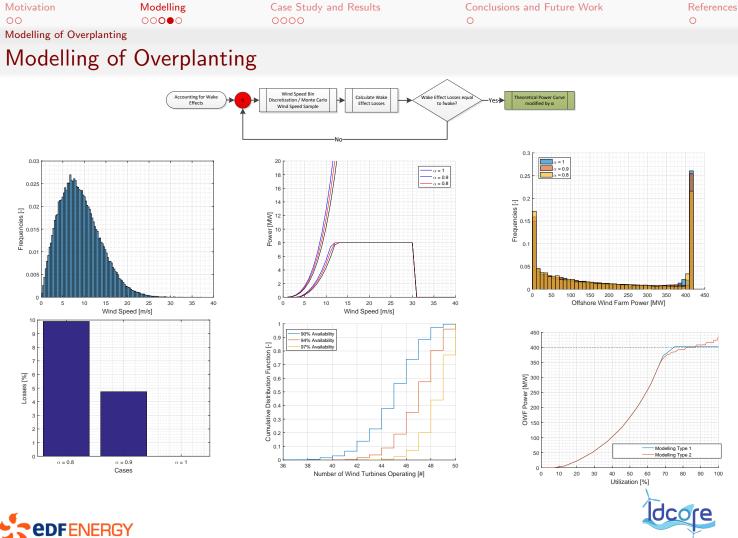

Case Study and Results


Conclusions and Future Work O

References O

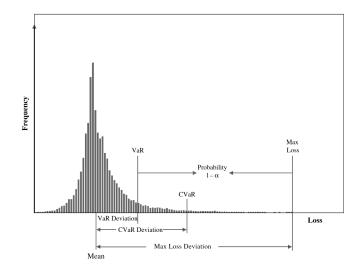
Modelling of Overplanting

# Modelling of Overplanting






Modelling Type 2








Industrial Doctoral Centre for Offshore Renewable Energy

| Motivation         | Modelling    | Case Study and Results | Conclusions and Future Work | References |
|--------------------|--------------|------------------------|-----------------------------|------------|
| 00                 | 0000●        | 0000                   | 0                           | 0          |
| Modelling Risk Ave | rsion        |                        |                             |            |
| Modelling          | Risk Aversio | n                      |                             |            |



[Rockafellar and Uryasev 2002]

### Risk metric

 $\boldsymbol{\rho}_{\alpha}[\lambda, LCOE] = \lambda \mathbf{CVaR}_{\alpha}[LCOE] + (1 - \lambda)\mathbf{Median}[LCOE]$ 





Motivation 00 Case Study Modelling

Case Study and Results

Conclusions and Future Work O

References O

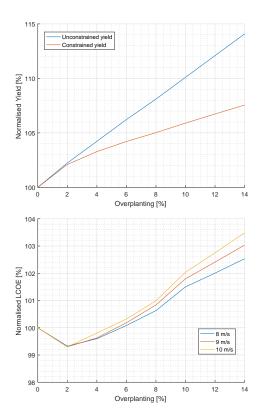
### Case Study

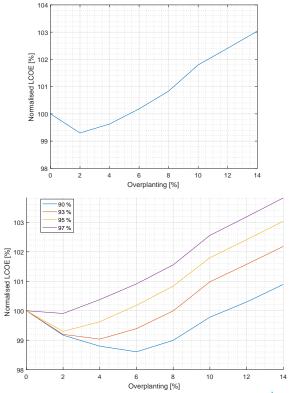
Case Study

400MW commercial offshore wind farm 400MW fixed maximum export capacity 50-8MW WTGs 0-14% overplanting

2% overplanting = 1 additional WTG

| Characteristic                     | Value    | Uncertainty             |
|------------------------------------|----------|-------------------------|
| Water Depth [m]                    | 25       | None                    |
| Distance from shore [km]           | 25       | None                    |
| Mean Wind Speed @ 100m [m/s]       | 9        | $\mathcal{N}(9, 0.1^2)$ |
| Wind Turbine Availability [%]      | 95       | $\mathcal{U}(90, 97)$   |
| Inter-Array Cable Availability [%] | 99       | $\mathcal{U}(97, 99)$   |
| Foundation Type [-]                | Monopile | None                    |
| Electrical Infrastructure [-]      | HVAC     | None                    |
| Wind Turbine Type [-]              | 164-8 MW | None                    |
| Wake effect [%]                    | 10       | None                    |
| Degradation Factor [%]             | 0.5      | None                    |





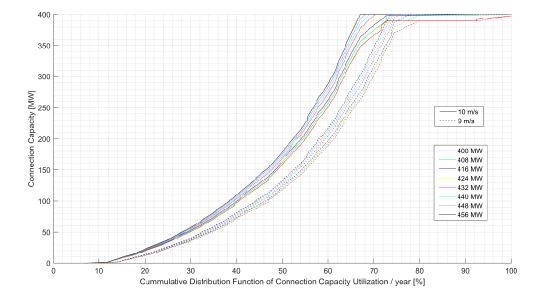

| Motivation            | Modelling | Case Study and Results | Conclusions and Future Work | References |
|-----------------------|-----------|------------------------|-----------------------------|------------|
| 00                    | 00000     | 000                    | 0                           | 0          |
| Deterministic Results |           |                        |                             |            |
|                       |           |                        |                             |            |

### Deterministic Results & Local Sensitivity Analysis









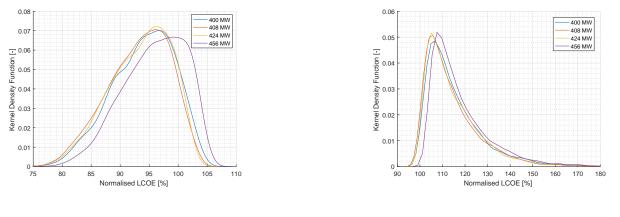

| Modelling | Case Study and Results | Conclusions and Future Work |
|-----------|------------------------|-----------------------------|
| 00000     | 0000                   | 0                           |
|           |                        |                             |

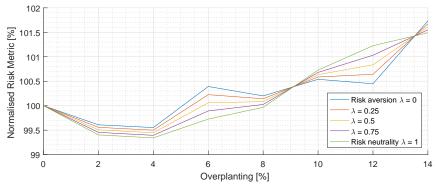
Local Sensitivity Analysis

Motivation

# Local Sensitivity Analysis - wind speed







References



| Motivation                            | Modelling | Case Study and Results | Conclusions and Future Work | References |
|---------------------------------------|-----------|------------------------|-----------------------------|------------|
| 00                                    | 00000     | 000●                   | 0                           | 0          |
| Stochastic Results                    |           |                        |                             |            |
| Stochastic Results o [] overplanting] |           |                        |                             |            |











### Conclusions and Future Work

#### Conclusions

- Development of a novel framework to evaluate overplanting
- Modelling Type 1 is easier to implement but may lead to an overestimation of the annual energy production
- Modelling Type 2 is more accurate but requires higher computational costs
- Wind turbine availability is the most sensitive parameter to overplanting
- Previous studies based on low wind turbine availabilities rates or on Modelling Type 1, need to be revisited
- Optimal overplanting setup increased when considering the uncertainty quantification framework regardless of risk appetite (from 2% to 4%)
- Overplanting the reference farm from 2% to 8% gives a better result than with no overplanting for a risk neutral setting

#### Future Work

- How is overplanting influence by larger turbines and sites located futher from shore?
- How does risk aversion influence the decision for these new sites?





| Motivation | Modelling                                                                                                                                                                                                                                               | Case Study and Results                                       | Conclusions and Future Work                                 | References |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------|
| 00         | 00000                                                                                                                                                                                                                                                   | 0000                                                         | 0                                                           | 0          |
| Reference  | ces                                                                                                                                                                                                                                                     |                                                              |                                                             |            |
|            |                                                                                                                                                                                                                                                         | ). "Transition from Determi<br>Offshore Wind Energy Conf     | nistic to Stochastic Cost Models<br><i>Ference</i> 44.June. | for        |
|            | Brid ODonovan (2011). Co<br>Energy Regulation.                                                                                                                                                                                                          | onnection Offer Policy & Pro                                 | ocess (COPP). Tech. rep. Commis                             | ssion for  |
|            | Forewind (2012). Environmental Statement Chapter 6 Appendix B Offshore Project Boundary Selection Report. Tech. rep. March.                                                                                                                             |                                                              |                                                             |            |
|            | Grid, National (2008). Rou                                                                                                                                                                                                                              | nd 3 Offshore Wind Farm C                                    | Connection Study. Tech. rep.                                |            |
|            | Mcinerney, Celine and Derek W Bunn (2017). "Optimal over installation of wind generation facilities". In: <i>Energy Economics</i> 61, pp. 87–96. ISSN: 0140-9883. DOI: 10.1016/j.eneco.2016.10.022. URL: http://dx.doi.org/10.1016/j.eneco.2016.10.022. |                                                              |                                                             |            |
|            | Morris, Nigel (2014). Decis<br>Commission for Energy Reg                                                                                                                                                                                                |                                                              | ap Installed Capacity Cap. Tech.                            | rep.       |
|            |                                                                                                                                                                                                                                                         | Stanislav Uryasev (2002). "C<br>of Banking & Finance 26, pp  | Conditional value-at-risk for gener<br>p. 1443–1471.        | al loss    |
|            | TenneT (2015). POSITION                                                                                                                                                                                                                                 | N PAPER Overplanting. Tecl                                   | h. rep. TenneT, pp. 1–7.                                    |            |
|            |                                                                                                                                                                                                                                                         | Overplanting in Offshore Win<br>Integration Workshop 49.0, p | d Power Plants in Different Regu<br>op. 0–4. DOI:           | Ilatory    |

10.1146/annurev.matsci.35.100303.110641.





| Motivation |  |
|------------|--|
| 00         |  |

Modelling 00000 Case Study and Results 0000

Conclusions and Future Work O References

# Questions

How does risk aversion shape overplanting in the design of offshore wind farms?

 ${\it Esteve.BorrasMora@edfenergy.com}$ 

#### Acknowledgements

This work is sponsored by EDF Energy R&D UK and the Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE), a consortium of the University of Exeter, University of Edinburgh and University of Strathclyde. IDCORE is funded by both the Energy Technologies Institute and the Research Councils Energy Programme through grant number EP/J500847/1. Additional support came from the UK Engineering and Physical Sciences Research Council through grant number EP/P001173/1 (CESI).



