Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms

> Department of Civil Engineering, The University of Tokyo Yuka Kikuchi and Takeshi Ishihara

EERA DeepWind'19 Trondheim, 17 January 2019

In floating offshore wind farm projects, turbine size is getting larger.

Hywind Project

Fukushima FORAWARD Project

WindFloat Project

2.5 MW 🖂 6 MW

 $2 \text{ MW} \cdot 5 \text{ MW} \cdot 7 \text{ MW}$ $2 \text{ MW} \implies 8.4 \text{ MW}$

What is upscaling rule of floating offshore windfarm system

- \checkmark Three previous researches upscaled OC4 floater for 5 MW into that for 10 MW turbine.
- ✓ Satinert et al. (2016) used optimization algorithm. (Not comparable to other researches)

Proposed upscaling procedure

	Main parameter	Leimster et al. (2016) NTNU	George (2014) Lisbon Univ.
Heave	Draft	Scale-up	Dock size
	Freeboard	Scale-up	Scale-up
Pitch	Distance b/w columns	Scale-up	Scale-up
	Diameter of upper column	Static pitch angle $q = F_{55}/C_{55}$	Balance b/w gravity and buoyancy
Surge	Mooring line	Mooring line length	Angle at fairlead

What factor has priority for upscaling ? The relationship between upscaling rule and floater motion or mooring force need to be clearly described. Myhr et al. (2016) has investigated the effect of different floater type on cost of energy by using engineering cost model, where the cost is assessed from steel amount of initial design of floater and mooting line.

Upscaling turbine effect of floater and mooring line is quantitatively not clear.

1. Upscaling rule of turbine, floater and mooring line are investigated and upscaling procedure is proposed.

 The semi-submersible floater for 2 MW used in Fukushima FORWARD project is upscaled that for 5 MW and 10 MW. The relationship between upscaling rule and floater motion or mooring force is investigated by dynamic analysis.

3. The levelized cost of energy is assessed by using upscaled floater and mooring line model.

Upscaling rule of turbine

	2 MW Bladed Demo	5 MW NREL	10 MW DTU
Rotor diameter	1	1.58	2.23
Turbine mass (RNA mass + Tower mass)	1	2.5	5
Hub height	1	1.22	1.57
Maximum thrust force	1	2.09	4.20
Maximum falling moment	1	2.52	5.26

XThe diameter and thickness at tower bottom were enlarged by referring Fukushima 2MW wind turbine.

Rational upscaling ratio $P \sim s^2$ 1²: 1.58²: 2.23² = 1: 2.5: 5 $m \sim s^3$ 1³: 1.58³: 2.23³ = 1: 3.9: 11.1

The ratio of mass followed s^2 law due to technology progress (Sieros et al. 2012) The ratio of maximum overturning moment followed s^2 law.

Construction constrains

Design criteria

Ref.) Fukushima FORWARD

Surge	Stiffness from mooring line			
Heave	Balance between gravity and buoyancy			
Pitch	Static pitch angle (The ratio of falling moment to restoring moment)			

Construction constrain was prioritized for feasible upscaling. The design criteria for floater motion was investigated.

Design criteria: The allowable stress. (DNV-OS-E301)

Methodology of increasing allowable stress	Cost
Increase diameter of mooring line	
Increase number of mooring line	_
Increase chain quality (strength) of mooring line (R3 \rightarrow R4 \rightarrow R5)	

The design criteria for mooring force was investigated.

What is the relationship between upscaling and similarity law.

Floater motion or mooring force

Turbine	$s^2 \text{ law } \bigcirc$		Constant	Satisfied
Floater	Kinematic similarity law ?		Decrease	Relaxed
Mooring line	Dynamic similarity law ?		Increase	Change quality

The rule for evaluation of the relationship between upscaling rule and FOWT was decided.

Upscaling procedure of floater

The upscaling procedure of floater and mooring line was proposed.

Static balance of upscaled floater

10/18

		Unit	2 MW	5 MW	10 MW
Constrains	Draft	[m]	21.3	21.3	21.3
Constrains	Freeboard	[m]	10.7	10.7	10.7
	Diameter of main column	[m]	5	6	6
Static balance	Diameter of upper column	[m]	8	12	16
in heave	The ballast weight	[kg]	3,118,971	9,802,573	22,690,528
Static balance in pitch	Moment of inertia of water plane area	[m ⁴]	58542	147526	307932
	Restoring moment in pitch direction	[kg• m²/s²]	588,431,626 (1)	1,482,847,699 (2.52)	3,095,150,356 (5.26)
	Distance between columns	[m]	47.3	50.2	54.3
Static balanceThe angle at fairlead in surge		[deg]	40	40	40

The static balance was satisfied

Dynamic analysis of FOWT system

Zhang and Ishihara (2019) Renewable Energy

Floater motion and mooring force prediction was validated by water tank test

Floater motion in DLC6.1

12/18

Kinematic law is relaxed in surge and pitch direction

DLC6.1 Environmental condition						
Wind $U_{50} = 50 \text{ m/s}$ $I = 0.11$						
Wave	$H_s = 11.7 \text{ m}$	$T_p = 14.76 \mathrm{sec}$				
Current $U_c = 1.44 \text{ m/s}$						

Mooring force in DLC6.1 and in DLC1.2

Dynamic similarity is satisfied by changing the quality (strength) of mooring line

$$LCOE = \frac{ICC \times FCR + O\&M}{AEP}$$

Item		Methodology				
Initial	Material	Steel Weight \times Cost per ton				
Capital	Installation	Vessel cost \times Installation day \div Weather downtime				
Cost		Installation cost per turbine				
Fixed Charge Rate		3 % interest				
Operation & Maintenance cost		Wind and wave time series, Work limit condition, Vessel cost, Turbine failure rate				
Annual		Capacity factor of 40 % and Availability of 90 %				

Assessed from constructed model

Assessed from demonstration project's experience

Estimation of material cost

The floater and mooring cost per MW decreased with turbine sizes.

		NTNU		Lisbon		Proposed	
		5 MW	10 MW	5 MW	10 MW	5 MW	10 MW
Draft	[m]	20.0	24.9	20.0	20.0	21.3	21.3
Upper column	[m]	9.9	14.3	12.0	15.8	12.0	16.0
Distance b/w columns	[m]	50	58.62	50.0	63.0	50.2	54.3
Floater steel weight	[kg]	3,567,000 (1)	7,598,000 (2.13)	3,850,000 (1)	5,580,000 (1.45)	4,018,045 (1)	5,180,545 (1.29)
Mooring line length	[m]	835	1045	835	835	673×2	673×2

Estimation of installation and O&M cost

Installation cost

Turbine installation

0.92 €M/turbine

Floater towing

0.92 €M/turbine

Mooring installation

3.69 €M/turbine

Operation and maintenance cost

- ECN O&M Calculator was used
- Simulated wind and wave time series
- The work limit condition was 2 m significant wave height
- Turbine reliability was set from ReliaWind

Access vessel

Summary of estimated LCOE

	Unit	$2 \text{ MW} \times 50$	$5 \text{ MW} \times 20$	10 MW imes 10
Design	[€k /kW]	0.1	0.1	0.1
Wind turbine	[€k /kW]	1.0	1.2	1.2
Floater	[€k /kW]	2.3	1.3	1.0
Mooring line	[€k /kW]	1.6	0.6	0.4
Installation cost	[€k /kW]	2.8	1.1	0.5
Cable	[€k /kW]	0.6	0.6	0.6
Initial Capital cost	[€k /kW]	8.4	4.9	3.8
Annual O & M cost	[€k /kW/year]	0.22	0.14	0.11
LCOE	[c/kWh]	32	19	15

The initial cost was reduced 45 % and 57 % respectively for 5 MW and 10 MW comparing to 2 MW turbine.

X Here estimated Installation and O&M cost has uncertainty because the assumption was very simple.

- 1. The upscaling rule of floating offshore wind turbine system was investigated from demonstration project experience and the procedure of upscaling was proposed.
- 2. For floater, static balance was satisfied, but kinematic law was relaxed in surge and pitch direction. For mooring line, dynamic similarity was satisfied.
- 3. By using engineering models and experience of demonstration projects, the initial cost was assessed for 2, 5, 10 MW turbines. The initial cost was reduced 45 % and 57 % respectively for 5 MW and 10 MW comparing to 2 MW turbine.

Acknowledgments

This research is carried out as a part of next-generation floating offshore project supported by National Energy Department Organization. Dr. Namba supported dynamic analysis. Wind Energy Institute of Tokyo provided turbine models. The authors wish to express their deepest gratitude to the concerned parties for their assistance during this study.