

Fatigue sensitivity to foundation modelling in different operational states for the DTU 10MW monopile-based offshore wind turbine

George Katsikogiannis^{1*}, Erin E. Bachynski¹, Ana M. Page²

¹Department of Marine Technology, Norwegian University of Science and Technology (NTNU)

²Norwegian Geotechnical Institute (NGI)

*Email: george.katsikogiannis@ntnu.no

Results

Conclusions

Part of WAS-XL project (Wave Loads and Soil Support for Extra Large Monopiles)

Primary objective: Reduction of uncertainties related to large-diameter monopile foundations.

Foundation modelling: Common methods (API *p*-*y*) not accurate -> more realistic representation of soil structure interaction is required.

Macro – element formulation [1] results in fatigue damage reduction [2].

Aim of the present study

Importance of foundation modelling in fatigue damage *when aerodynamic damping is not effective.*

Parked States & Wind - Wave Misalignment Conditions

lacksquare Norwegian University of Science and Technology

Diameter	Thickness	Penetration Length	Young's modulus	Shear Modulus
[m]	[m]	[m]	[GPa]	[GPa]
9.0	0.11	36	210	81

Example (Wind Bin 14 - 16 m/s)

Depth:30m

Spectral Peak Period [s] Hs [m] 1-2 2-3 3-4 4-5 5-6 6-7 7-8 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 8-9 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 0.25 7.41E-07 3.35E-07 0.75 3.79E-06 5.29E-06 5.83E-07 1.25 1.14E-05 4.83E-04 1.95E-04 3.80E-05 1.05E-05 1.75E-06 1.67E-06 3.43E-06 2.32E-06 4.45E-07 1.13E-06 5.36E-07 1.75 5.16E-04 4.30E-0 9.03E-05 5.07E-05 1.51E-05 1.49E-05 1.88E-05 5.24E-06 1.16E-05 8.84E-07 2.25 1.35E-0 8.93E-03 2.02E-03 3.64E-04 1.04E-04 2.32E-05 2.30E-05 3.32E-05 1.87E-05 4.53E-06 2.75 1.97E-0 03 2.03E-03 3.07E-04 9.18E-05 2.96E-05 4.32E-05 7.30E-05 1.52E-05 2.04E-06 3.25 1.7 E-04 1.20E-03 7.76E-04 4.14E-04 2.66E-04 8.84E-05 1.89E-05 3.53E-05 6.06E-06 3.75 3.73E-04 2.80E-04 1.85E-04 1.73E-04 7.82E-05 8.76E-06 5.78E-05 9.23E-06 4.25 4.76E-05 5.48E-05 5.18E-05 6.88E-05 3.86E-05 2.96E-05 3.40E-05 4.75 2.31E-05 1.51E-05 3.23E-05 4.58E-05 5.25 1.48E-05 4.13E-05 Selection of most contributing sea-states to the long-term fatigue damage for 5 wind bins. Simulation & Environmental Parameters EC Time Wind-Wave Wave T_p U_w Hs number Simulation Misalignment Spectrum [s] [degrees] [m/s][m] [s] 3600 5.06 0.75 5.50 Pierson-Moskowitz 1 3600 Pierson-Moskowitz 2 9.06 1.25 5.50 $0^{\circ}, 15^{\circ}, 30^{\circ},$ 3 3600 14.94 2.25 6.50 Torsethaugen 45°, 90° 3600 20.90 3.75 7.50 **JONSWAP** 4 5 3600 26.74 5.25 8.50 **JONSWAP**

Nonlinear damping in M1. Increases with respect to the response amplitude

Natural frequency dependency on load levels

M1, M3 : For higher load levels \rightarrow lower foundation stiffness \rightarrow lower natural frequencies

M2 linear elastic model \rightarrow Constant natural frequency for all load levels

Norwegian University of Science and Technology

Operational state: Different processes dominate per EC

EC1 3P component

- EC2 Slowly varying wind component
- *EC3* Wide range Mainly waves
- EC4 Waves Aerodynamic damping effect at natural frequency range

Waves – Large loads at natural frequency range

EC	U _w [m/s]	H _s [m]	T _p [s]
1	5.06	0.75	5.50
2	9.06	1.25	5.50
3	14.94	2.25	6.50
4	20.90	3.75	7.50
5	26.74	5.25	8.50

Combination of stiffness and damping dominance per EC

EC5

Soil Damping dominance for all ECs

Norwegian University of Science and Technology

Results

Conclusions

Soil Damping dominates for misalignment angles over 30 degrees

Conclusions

Soil Damping dominates for misalignment angles over 30 degrees

- 1. Different processes dominate the dynamic processes depending on the environmental state.
- 2. Both foundation stiffness and damping formulation affect the behavior in different frequency regimes.
- 3. Considerably higher fatigue differences in parked state (-60% to 154%) compared to operational state (-10% to 50%).
- 4. Large differences (up to 183%) for misalignment angles larger than 30 degrees.

Relatively high importance of foundation modelling and hysteretic effects for fatigue damage in cases where aerodynamic damping is negligible.

- Erin Bachynski (NTNU)
- Ana Page (NGI)
- Sverre Haver (UiS)

NGI ONTNU 🕥 SINTEF 🐼 Forskningsrådet

Thank you for your attention!

Questions?

BACK-UP SLIDES

NGI 🛛 NTNU 🕥 SINTEF 🐼 Forskningsrådet

Axial stress STD & fatigue damage along monopile for operational (left) and parked (right) state [EC4]

🔊 NGI 🛛 NTNU 🕥 SINTEF 松 Forskningsrådet

Conclusions

	Fatigue Damage [-] EC1					
	Operation	al	Parked			
0	1.63E-07	180	2.54E-08	180		
15	1.58E-07	180	2.30E-08	198		
30	1.47E-07	180	1.88E-08	198		
45	1.33E-07	180	1.52E-08	216		
90	1.06E-07	180	1.02E-08	270		
	Fatigue	Fatigue Damage [-] EC2				
	Operation	Operational Parked				
0	4.35E-07	0	2.41E-07	180		
15	4.18E-07	0	2.18E-07	198		
30	3.74E-07	0	1.74E-07	198		
45	3.22E-07	18	1.35E-07	216		
90	2.48E-07	324	8.07E-08	270		
	Fatigue	Damage	[-] EC3			
	Operational		Parked			
0	6.77E-07	180	1.32E-06	180		
15	6.27E-07	198	1.13E-06	198		
30	6.42E-07	198	9.70E-07	198		
45	7.08E-07	216	7.83E-07	216		
90	1.22E-06	270	6.18E-07	270		
	Fatigue	Damage	[-] EC4			
	Operational Parke		Parked	ł		
0	6.27E-06	180	8.06E-06	180		
15	6.05E-06	198	7.20E-06	198		
30	5.90E-06	198	6.46E-06	198		
45	6.22E-06	216	6.16E-06	216		
90	8.16E-06	270	6.56E-06	270		
	Fatigue	Damage	[-] EC4			
	Operational		Parked			
0	1.86E-05	180	3.83E-05	180		
15	1.87E-05	198	3.27E-05	0		
30	1.99E-05	216	2.88E-05	198		
45	2.40E-05	234	2.68E-05	216		
90	3.95E-05	270	3.36E-05	270		

GREEN ENTRANS

EDF ENERGY

NGI 🛛 NTNU 🕥 SINTEF 🐼 Forskningsrådet

