

EERA DeepWind 2019

Floating offshore wind turbine loads and motions in the unstable atmospheric conditions

By: Rieska Mawarni Putri, Charlotte Obhrai & Julie-Ann Marie Knight

25. januar 2019

Picture retrieved from: https://windeurope.org/wp-content/uploads/hywind-scotland-first-floating-offshore-wind-farm.jpg

Outline

- **o** Motivation
- **O** Background
- O Højstrup spectral model parametric study
- **O** Results coupled SIMO-RIFLEX on OC3-Hywind
- **O** Conclusion
- **O** Future work

Motivation

• Initial study from the master thesis project 'A study of the coherences of turbulent wind on a floating offshore wind turbine'

Background

• Højstrup spectral model: derived based on Kaimal spectral model, especially developed for unstable diabatic conditions:

 $S(n) = S_L(n) + S_M(n)$ Low-frequency part High-frequency part

O Parameters: boundary layer height z_i , Obukhov-length L, height z**O** In combination with Davenport coherence:

$$Coh_{i}(n) = \exp\left[-\frac{n}{\bar{u}}\sqrt{\left(C_{i}^{y}d_{y}\right)^{2} + \left(C_{i}^{z}d_{z}\right)^{2}}\right]$$

Højstrup spectral model – parametric study

Benchmark: z_i=1000 m, L=-100 m

Simulations

O Turbulence box generation using MATLAB[®]

Load case			Decay coefficient (Davenport Coherence							
Spectral model	<i>z_i</i> (m)	<i>L</i> (m)		$C_u^{\mathcal{Y}}$	$C_v^{\mathcal{Y}}$	$C_w^{\mathcal{Y}}$	C_u^z	C_v^z	C_w^z	
Højstrup	700	-50	Value	7	7	6.5	10	10	3	
		-90								
		-180	wind speed			ð	8, 11.4, 15 ms ¹			
	1000	-50	#seed				6			
		-90	Wave				JONSWAP			
		-180					<i>H_S</i> = 6 m			
Kaimal	700	∞				<i>T</i> _p = 12 s		L2 s		
	1000	∞					γ = 3.3			

O Coupled SIMO-RIFLEX[®] simulations on the OC3-Hywind

Results – Turbulence Intensity

Results – DEL tower top yaw torsion

📕 Højstrup L=-50 🔜 Højstrup L=-90 🔜 Højstrup L=-180 📕 Kaimal

Results – DEL tower base side-side bending

Results – DEL blade root flap-wise bending

📕 Højstrup L=-50 🔜 Højstrup L=-90 🔜 Højstrup L=-180 📕 Kaimal

Results – platform yaw motions

Results – other DEL and motions

- Tower base fore-aft bending DEL: 7% difference between neutral (Kaimal) and very unstable (Højstrup L=-50) conditions
- Blade root edge-wise bending DEL: 3% difference between neutral (Kaimal) and very unstable (Højstrup L=-50) conditions
- O Other platform motions mode variations were not noticable (except for roll, despite its small magnitude of -0.3° to 0.6°)

Limitations – Davenport decay coeffients

• A modified Davenport coherence by Cheynet et. al (2018) for vertical coherence:

$$Coh_i(d_z, n) = \exp\left[-\sqrt{\left(\frac{c_1^i f d_z}{\overline{u}}\right)^2 + \left(\frac{d_z}{l_2}\right)^2}\right]$$

o $l_2 = \overline{u}/c_2^i$, proportional to a typical length scale of turbulence

O Decay coefficient depending on stability conditions (-2 < z/L < -0.2) derived from FINO1 data:

Decay coefficient								
c_1^u	c_1^v	c_1^w	C_2^W					
$11+1.8\exp(4.5 z/L)$	$7.1+3.4\exp(6.8 z/L)$	$3.5+0.7\exp(2.5 z/L)$	$0.05 + 0.13 \exp(5 z/L)$					

Conclusions

- The addition of low-frequency component in Højstrup model increases the spectral energy and TI
 - L and z_i are the parameters driving the TI
 - OC3-Hywind DELs for tower top yaw torsion showed a variation up to 65% for the different load cases. Also up to 37% for tower base side-side bending
- Højstrup spectral model was developed based on onshore measurement
- The importance of selecting a proper wind model representative for offshore environment in the OWT simulations, particularly for unstable conditions

Future work

- Simulations using spectral & coherence model as derived in the study of (Cheynet et al., 2018) using data from FINO1 measurement platform. This is only verified for vertical separations
- New measurements from the COTUR project will hopefully provide new information on coherence for horizontal separations
- Simulations using modified Mann spectral tensor model (Chougule et al., 2018) with the possibility of deriving parameters from offshore data into the models
- O Comparing various floater models and rotor sizes (Bachynski & Eliassen, 2018)

Thank you 🙂

