

Uncertainties in offshore wind turbulence intensity

Turbulence Intensity= $TI = \frac{wind \ speed \ standard \ deviation}{wind \ speed \ mean} = \frac{\sigma_U}{U}$

Sofia Caires and Jan-Joost Schouten - Deltares, Netherlands

Lasse Lønseth, Vegar Neshaug, Irene Pathirana and Ola Storas⁻ Fugro Norway AS, Norway

Acknowledgments: The Dutch Ministry of Economic Affairs (rvo)

Motivation

Deltares

One of the input parameters for the development, design and operation of wind farms is the <u>wind speed</u> and <u>turbulence intensity</u> at hub height.

Given that measurements at hub height are rare, hub height wind speeds and turbulence intensities are often determined using simplified formulations.

$$U_z = U_{z_{ref}} \left(\frac{z}{z_{ref}}\right)^{\alpha}$$
 TI= β

These formulations are based on assuming a dependence only on wind speed at a reference level and neutral or fixed atmospheric stability.

Such assumptions involve large <u>uncertainties</u> given that the vertical wind profile – i.e. translation of wind speed and TI in height – depend both on the <u>sea surface roughness</u> and <u>atmospheric stability</u>.

Deltares

Aim:

Study the dependence of turbulent intensity (and wind speed) on atmospheric stability and surface roughness.

Approach:

Use a comprehensive dataset of North Sea metocean observations to determine the variability of the turbulence intensity and wind speed with <u>vertical temperature gradients</u>, <u>wind severity</u> and <u>surface</u> roughness.

Data

TUGRO

EERA DeepWind'19

16 January 2019

Variation of turbulence intensity with wind speed

Deltares

EERA DeepWind'19

Variability in the vertical wind speed profile

All

Atmospheric stability filtering

T H

Wind speed threshold filtering

Variability in the vertical wind speed profile

Summary of mean wind profiles under different conditions

Deltares

EERA DeepWind'19

Variability in the Turbulence Intensity

Summary of mean turbulence intensity under different conditions

EERA DeepWind'19

Deltares

Correlation Turbulence Intensity & sea surface roughness

Deltares

Correlation between the turbulence intensity (TI) and the surface roughness proxies surface wind speed and significant wave height.

Final remarks

- The turbulence intensity is shown to depend strongly on the atmospheric stability and less strongly on the sea surface roughness.
- The lower turbulence intensity values are observed under stable atmospheric conditions.
- The dependence of the turbulence intensity on the surface roughness is higher at the lower levels.
- The significant wave height is the proxy of the sea surface roughness with the stronger correlation with the turbulence intensity.

• If not possible due to lack of data, the uncertainties that result from not accounting for these should be considered when determining turbulence intensities using the standard formulations.

Deltares

