Heuristics-based design and optimization of offshore wind farms collection systems

Juan-Andrés Pérez-Rúa Daniel Hermosilla Minguijón Kaushik Das Nicolaos A. Cutululis

EERA DeepWind'19, Trondheim, 16 – 18 January 2019

DTU Wind Energy Department of Wind Energy

INDEX

- 01 INTRODUCTION
- 02 PROBLEM DEFINITION
- 03 METHODOLOGY
- 04 COMPUTATIONAL EXPERIMENTS
- 05 SUMMARY

Offshore Wind Farm Design and Optimization Problem (OWiFDO)

Balance between adverse factors to extremize performance metrics

Offshore Wind Farm Design and Optimization Problem (OWiFDO)

Multi-step optimization approach

- Overall electrical infrastructure costs can range from 8.6% to 10.5% of the total costs.
- The collection systems of OWFs represent an important share of the electrical infrastructure capex.
- The collection systems of OWFs have a critical impact on the operation: losses and overall reliability.

INDEX

- 01 INTRODUCTION
- 02 **PROBLEM DEFINITION**
- 03 METHODOLOGY
- 04 COMPUTATIONAL EXPERIMENTS
- 05 SUMMARY

2 PROBLEM DEFINITION

NP-Hard Problem

$$\left(t \times \left[N_{t-1} + 0.5 \sum_{i=1}^{t-2} \frac{(t-1)!}{i! (t-1-i)!} N_i N_{t-1-i}\right]\right) \times \frac{(t\sigma)!}{(t!^{\sigma}) \times \sigma!}$$

Jenkins, A. M., M. Scutariu, and K. S. Smith. "Offshore wind farm inter-array cable layout." *PowerTech* (*POWERTECH*), 2013 IEEE Grenoble. IEEE, 2013.

Where t is the number of turbines per string (TPS) and σ is the number of strings.

Consider an instance with **75 WTs** and **5 TPS**, this result in 1.19×10^{107} potentials, taking around 9.45×10^{89} years using a high-speed 4.0 GHz computer to check all possible solutions!

The age of the Earth is 4.54 \pm 0.05 billion years (4.54 \times 10⁹ years)

2 PROBLEM DEFINITION

Applicability in OWFs

2 PROBLEM DEFINITION

10 DTU Wind Energy, Technical University of Denmark

INDEX

- 01 INTRODUCTION
- 02 PROBLEM DEFINITION
- 03 **METHODOLOGY**
- 04 COMPUTATIONAL EXPERIMENTS

05 SUMMARY

Full methodology flow chart

The heuristics

- Define for each branch e_{ij} the trade-offs values: $t_{ij} = w_{ij} p_i$ and $t_{ji} = w_{ij} p_j$. Get the triple set $T(i, j, t_{ij})$.
- Where $p = a \cdot (b \cdot w_{i1} + (1 b) \cdot w_{lm}) \forall v \in \mathbf{P}$. See table below for each heuristic.

Heuristic	Initialization	Update when $\{i, j\}$ is chosen
Prim	p_1 = $0 \land p = -\infty \ \forall \ v \in V \setminus \{1\}$	$p_j=0$
Kruskal	$p=0 \ orall \ v \in oldsymbol{V}$	No update
Esau-Williams	$p=w_{i1} \ orall \ v \in oldsymbol{V}$	$w_i = w_j \ \forall \ v \in C_{\boldsymbol{node}}(i)$
Vogel's Approximation Method	$p=b_i-a_i \ orall \ v\in V$	$w_i = b_i - a_i$. On the merged new component.

Table 1. Nodal weight parameter definition.

The heuristics

The Metaheuristic

Genetic Algorithm

Uses an implementation of genetic algorithms

- cMST -> NP-hard
- Formulation of graph problems adapts well
- Offer great flexibility for adding constraints
- Implementations present in literature

Hermosilla Minguijón D, Pérez-Rúa J A, Das K and Cutululis N A 2019 Metaheuristicbased Design and Optimization of Offshore Wind Farms Collection Systems IEEE PowerTech at Milan (submitted) pp 1–6

INDEX

- 01 INTRODUCTION
- 02 PROBLEM DEFINITION
- 03 METHODOLOGY
- 04 **COMPUTATIONAL EXPERIMENTS**
- 05 SUMMARY

Single cable

Prim

The OWF:

WTs number: 51 WT nominal power: 4 MW Collection system nominal voltage: 33 kV Set of cables available: {500 mm²} Capacity constraint: 9

Single cable

Esau-Williams

The OWF:

WTs number: 51 WT nominal power: 4 MW Collection system nominal voltage: 33 kV Set of cables available: {500 mm²} Capacity constraint: 9

Single cable

The OWF:

WTs number: 51 WT nominal power: 4 MW Collection system nominal voltage: 33 kV Set of cables available: {500 mm²} Capacity constraint: 9

GΑ

Single cable

	Prim	Kruskal	Esau-Williams	Vogel's Appr. Method	Genetic Algorithm
Feasible	Yes	Yes	Yes	Yes	Yes
AEP [GWh]				855.36	
Losses [GWh]	4.82	3.75	4.17	3.75	4.41
Initial Investment CS [M€]	41.22	39	38.13	39	39.30
Diff. with best [%]	8.12	2.30	0	2.30	3.08
$LCOE_{cs} \in (MWh]$	2.96	2.80	2.74	2.80	2.82
Diff. with best [%]	8	2.19	0	2.19	2.92
NPV_{cs}^{BC} [M \in]	356.64	359.36	360	359.36	358.75
$NPV_{cs}^1 \ [M \in]$	621.89	624.94	625.49	624.94	624.13
Δ diff. with best w.r.t BC [%]	6	-19	—	-19	6
NPV_{cs}^2 [M \in]	887.13	890.52	890.94	890.52	889.50
Δ diff. with best w.r.t BC [%]	12	-38	_	-38	12

Table 2. Single cable results.

Multiple cables

The OWF:

WTs number: 51 WT nominal power: 4 MW Collection system nominal voltage: 33 kV Set of cables available: {138, 300 mm²} Capacity constraint: 7

(Single case was 9)

DTU

Multiple cables

Prim

Esau-Williams

Multiple cables

	Prim	Kruskal	Esau-Williams	Vogel's Appr. Method	Genetic Algorithm	
Feasible	No	Yes	Yes	Yes	Yes	
AEP [GWh]	855.36					
Losses [GWh]	—	7	7.3	7	7.99	
Initial Investment CS [M€]	_	28.42	27.93	28.42	27.90	
Diff. with best [%]	_	1.80	0.05	1.80	0	
$LCOE_{cs} \in (MWh]$	_	2.05	2.01	2.05	2.01	
Diff. with best [%]	—	1.99	0	1.99	0	
NPV_{cs}^{BC} [M \in]	_	368.42	368.77	368.42	368.47	
NPV_{cs}^1 [M \in]	_	632.98	633.24	632.98	632.73	
Δ diff. with best w.r.t BC [%]	—	-25	_	-25	70	
NPV_{cs}^2 [M \in]	_	897.54	897.71	897.54	896.99	
Δ diff. with best w.r.t BC [%]	—	-51	_	-51	139	

 Table 3. Multiple cables results.

INDEX

- 01 INTRODUCTION
- 02 PROBLEM DEFINITION
- 03 METHODOLOGY
- 04 COMPUTATIONAL EXPERIMENTS
- 05 **SUMMARY**

5 SUMMARY

- > Heuristic represents a good tool for designing collection systems in OWFs. They have mathematical expressions for worst case running time, and can come up with very good solutions very fast.
- Exhaustive computational experiments indicate that, Esau-Williams is the most likely heuristic to provide feasible solutions. This is due to its trade-off function. For single cable, provides the best solution, and in the case of multiple cables, provide the solution with the best investment-losses balance.
- > Exhaustive computational experiments indicate that, Kruskal and VAM, are the most likely heuristics to come up with the lowest losses. This is due to their trade-off function.
- Exhaustive computational experiments indicate that, Prim, is the most likely heuristic to provide infeasible solutions. This is due to its trade-off function.
- Evolutionary algorithms, such as the Genetic Algorithm, are a very valuable tool for solving the unfeasibility problem from heuristics. They can be designed to optimize the initial investment, in contrast to the heuristics.
- > The Genetic Algorithm tends to form smaller WTs clusters into feeders than Esau-Williams, therefore, being able to provide cheaper initial investment solutions, albeit with greater power losses.
- Future work consists on implementing a MILP-heuristic-based solver to tackle this problem; combining mathematical formulations and high-level heuristics (as the ones designed in this work).

THANKS!

Questions?