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» Background Acknowledgements:

» Diode Rectifier as offshore HVYDC Ramon Blasco Jiménez & team, UPV
» Grid Forming Wind Turbines Lie Xu & team, UoS

» Offshore AC Grid Start-up
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 Black Start by Offshore Wind Turbines
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Control challenges for grid integration

Offshore wind development

Offshore wind capacity set to reach 520 GW by 2050
* Could raise offshore wind to 520 GW

4% of global power generation by 2050

= Average new turbine capacity set to reach
B.3 MW by 2022 - up 184% since 2010

» Next-gen turbines offer longer blades
and higher output

_________ - 2018 2050

&8 IRENA
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Control challenges for grid integration

Offshore wind development

Figure 1: Global levelised cost of electricity from offshore wind farms
by year of commissioning, 2010-2021
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Source: IRENA, 2018a.

Source: IRENA, Offshore innovation widens renewable energy options, September 2018
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Control challenges for grid integration

Offshore wind development

Main cost components of offshore wind farms:
- turbines (including towers)
- the foundations Investment
" ; costs Total AC cost
- the grid connection to shore t '

N P
AC or DC*~ Total DC cost

Power flow is in one direction only
Why not use a diode rectifier offshore?

Distance

?—Critical distance—ﬁ

Source: IRENA, Offshore innovation widens renewable energy options,
September 2018
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https://new.abb.com/systems/hvdc/why-hvdc/economic-and-environmental-advantages

Control challenges for grid integration

PROMOTIoN project

Progress on Meshed HVDC Offshore Transmission Networks
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Control challenges for grid integration

Objectives

Objective 2 Objective 3 Objective 4
Develop test cases Define & apply Recommend grid

Objective 1

Define functional

requirements to OWFs & control algorithms compliance evaluation code requirements
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Control challenges for grid integration

Diode Rectifier Units as offshore HVYDC

% %} %} WPP HVDC offshore
transformers terminal
current (D @ _J[f‘} HVDC link _“f’}

VSC 2‘» %: %h @J I VSC-MMC

vsc-mmc U

solution %» %» %» . oehere
)

Diode-Rectifier Units
(DRUs)

DRU o ]
nesvc\;lution % %? %? @4

R

Key features of the Modular Diode Rectifier Unit

VSC-MMC
onshore

— |
—

i, rugged
*  Bio di dable and flame

\ 300/0
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Simple and robust power electronics LTy 65 /D 2U"%0 ]
' {/u — )
- Small platform with easy transport and ' :—1 [ |
: — — @
installation —=4 topsideweight tallation t ———
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* High reliability, minimal maintenance

* Mo offshore DC converter as single point
of failure

- Flexible offshore installation opticns due
te modular rectifier concept
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Control challenges for grid integration

Grid Forming Wind Turbines

VSC - HVDC HVDC
. . wpp HVDC Offshore

Active & Reactive Power[ transformer transformer Onshore
I' - Es-e-a-r- | DC @
+ Box |
O T \\\\ T AC Onshore

/\/\/ AC Grid
Offshore Voltage & Frequency
: " Gear
L.Box
Active & Reactive Power HVDC

Voltage & Frequency Control /\/\/ Diode Rectifier Unit Onshore
: © # EEEAHO:
—T_\\_T—i AC Onshore

AC Grid

Grid forming wind turbines control
- dg current control based
- voltage/angle control based
- VSM control
- GPS synchronization based
- master/slave based
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Control challenges for grid integration
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Offshore AC Grid Start-up Options
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Control challenges for grid integration

Some results — AC grid start-up (string connection
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Figure 2-6: Simulation results during offshore AC grid start-up (string connection}: (a) active power through umbilical cable
neasured at umbilical offshore and on-shore ends; (b) reactive power through umbilical cable measured at offshore and on-

shore ends; (¢} offshore and on-shore AC voltages: (d) WTG active power Pwr4; (2) WTG reactive power Qwi-y.
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igure 2-8: (d) Simulation results during offshore AC grid start-up (string connection): (a) active power delivered by eact

gure 2-7: Simulation results during offshore AC grid start-up (string connection): (a) total OWF active power; (b) offshore (F-i; (b) reactive power generated by each QWF-i, (¢) voltage at terminals of each DRU platiorm; (d) current through es

voltage Vi) (c) active power through the umbilical cable; (d) frequency of the offshore AC grid.

OWF4.

www.promotion-offshore.net, Deliverable 3.4: Results on control strategies of WPPs connected to DR-HVDC
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Control challenges for grid integration

Some results — Frequency control
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Figure 3-12: Case 12 - OWF’s response to an onshore under-frequency event (¢t = 0.5s) at high wind speed -
Reserves: 10% — Overloading released at r = 13s — CBase: P = P*, CP: P = P* + APppg , CF: P = P* 4+ APgg ,
CPFE-MPPT: P = Pyppr, + APprg + APgpg , CPFI: P = Pyppr + APppg + APppg , CPFE-Ref: P = P* + APppg + APprg

- r‘ www.promotion-offshore.net, Deliverable 3.5: Performance of ancillary services pro-vision from WFs connected to DR-HVDC(
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Control challenges for grid integration

Black-start - Progress Towards Demonstration

Outside PROMOTIioN
Energinet performs Black Start field test with
Skagerrak 4 (SK4) HVDC interconnector

SK4

WP3 Performs Black Start
Simulation Test with Offshore WPP

To energize:

* 3 buses

» Overheadline & underground cable
« Shunt reactor & transformer

o Step MW++ load
» Load changes
* Frequency & voltage setpoint changes
» Load disconnection

Results to be compared against
HVDC field tests by Energinet

[https://ens.dk/sites/ens.dk/files/Statistik/el_produktion_og_transmission_2017_300dpi.pdf]
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Control challenges for grid integration

Scenarios - Self-Energization & Black Start
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Control challenges for grid integration

Some results — black-start
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Control challenges for grid integration

Some results — black-start
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Control challenges for grid integration

Models for Control of WT/WPP Connected to DR- HVDC
lontial_onh § | 4 |
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Déli\}erabie 3.3:
Models for control of WT/WPP connected to DR-HVDC

Dis

v Offshore AC start-up

v Voltage & frequency control

v" Active power setpoint control
v' Offshore AC fault ride-through
v Intentional islanded operation

.....................
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Control challenges for grid integration

Achievements

v Control and Modelling
v Novel grid forming wind turbine controls
v' Confidential grid forming WPP simulation models
v" Academic (white-box) & Industrial (black-box)

v Operation of DRU HVDC Systems

v Functional requirements for Diode-Rectifier (DRU) connection of Wind Power Plants
v' Control algorithms and simulation test cases & results
v Proof of DRU concept via simulations
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Control challenges for grid integration

Main Findings and Challenges
Operation of DRUs

« Wind turbines can operate with DRU-connection without any
degradation compared to VSC
* Wind turbines can operate as islanded (idling, self-sustaining)

Fault Handling in DRU-connected OWPP

 DRU inherent response to DC link voltage
eases onshore AC fault ride-through

Ancillary Services by DRU-connected
OWPP

 DRU connected OWPP can contribute to
frequency support and oscillation damping

OWPP Self-energization and Black Start

« OWPP can energize its AC network and might be able to
contribute to black start
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