

Nicolaos A. Cutululis, DTU Wind Energy 17 January 2019, DeepWind Conference, Trondheim

A

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714

- Background
- Diode Rectifier as offshore HVDC
- Grid Forming Wind Turbines
- Offshore AC Grid Start-up
- Black Start by Offshore Wind Turbines

Acknowledgements: Ramón Blasco Jiménez & team, UPV Lie Xu & team, UoS Ömer Göksu & Oscar Saborío-Romano, DTU

Control challenges for grid integration Offshore wind development

Offshore wind capacity set to reach 520 GW by 2050

Control challenges for grid integration Offshore wind development

Figure 1: Global levelised cost of electricity from offshore wind farms by year of commissioning, 2010-2021

Source: IRENA, Offshore innovation widens renewable energy options, September 2018

Offshore wind development

Main cost components of offshore wind farms:

- turbines (including towers)
- the foundations Investment costs Total AC cost - the grid connection to shore - AC or DC? Total DC cost DC line cost AC line cost DC terminal costs Power flow is in one direction only AC terminal costs Why not use a diode rectifier offshore? Distance Critical distance

Source: IRENA, Offshore innovation widens renewable energy options, September 2018

Source figure: ABB, online

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714.

Control challenges for grid integration PROMOTION project Progress on Meshed HVDC Offshore Transmission Networks

Control challenges for grid integration **Objectives**

Diode Rectifier Units as offshore HVDC

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714.

Control challenges for grid integration Grid Forming Wind Turbines

- voltage/angle control based
 - VSM control
- GPS synchronization based
 - master/slave based

Control challenges for grid integration Offshore AC Grid Start-up Options

Control challenges for grid integration Some results – AC grid start-up (string connection)

gure 2-7: Simulation results during offshore AC grid start-up (string connection): (a) total OWF active power; (b) offshore /F-i; (b) reactive power generated by each OWF-i, (c) voltage at terminals of each DRU platform; (d) current through each over through the umbilical cable; (d) frequency of the offshore AC grid.

www.promotion-offshore.net, Deliverable 3.4: Results on control strategies of WPPs connected to DR-HVDC

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714.

Some results – Frequency control

Figure 3-12: Case 12 – OWF's response to an onshore under-frequency event (t = 0.5s) at high wind speed – Reserves: 10% – Overloading released at t = 13s – CBase: $\hat{P} = P^*$, CP: $\hat{P} = P^* + \Delta P_{PFR}$, CF: $\hat{P} = P^* + \Delta P_{FFR}$, CPFE-MPPT: $\hat{P} = P_{MPPT_0} + \Delta P_{PFR} + \Delta P_{FFR}$, CPFE-MPPT: $\hat{P} = P_{MPPT_0} + \Delta P_{PFR} + \Delta P_{FFR}$, CPFE-Ref: $\hat{P} = P^* + \Delta P_{PFR} + \Delta P_{FFR}$

www.promotion-offshore.net, Deliverable 3.5: Performance of ancillary services pro-vision from WFs connected to DR-HVDC

Black-start - Progress Towards Demonstration

Outside PROMOTioN Energinet performs Black Start field test with Skagerrak 4 (SK4) HVDC interconnector

WP3 Performs Black Start Simulation Test with Offshore WPP

To energize:

- 3 buses
- Overheadline & underground cable
- Shunt reactor & transformer
- Step MW++ load
 - Load changes
 - Frequency & voltage setpoint changes
 - Load disconnection

Results to be compared against HVDC field tests by Energinet

[https://ens.dk/sites/ens.dk/files/Statistik/el_produktion_og_transmission_2017_300dpi.pdf]

Scenarios – Self-Energization & Black Start

66 kV

HVDC-connected OWPP(s) with AC collector substation(s)

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714.

Control challenges for grid integration Some results – black-start

Control challenges for grid integration Some results – black-start

Models for Control of WT/WPP Connected to DR- HVDC Confidential - only for members of the consortium

- Aggregated single WT
- Ideal onshore DC voltage
- Ideal WT DC voltage
- ✓ Offshore AC start-up
- ✓ Voltage & frequency control
- ✓ Active power setpoint control
- ✓ Offshore AC fault ride-through
- \checkmark Intentional islanded operation

Control challenges for grid integration Achievements

- ✓ Control and Modelling
 - \checkmark Novel grid forming wind turbine controls
 - ✓ Confidential grid forming WPP simulation models
 - ✓ Academic (white-box) & Industrial (black-box)

- ✓ Operation of DRU HVDC Systems
 - ✓ Functional requirements for Diode-Rectifier (DRU) connection of Wind Power Plants
 - \checkmark Control algorithms and simulation test cases & results
 - \checkmark Proof of DRU concept via simulations

Control challenges for grid integration Main Findings and Challenges

Operation of DRUs

- Wind turbines can operate with DRU-connection without any degradation compared to VSC
- Wind turbines can operate as islanded (idling, self-sustaining)

Fault Handling in DRU-connected OWPP

 DRU inherent response to DC link voltage eases onshore AC fault ride-through

Ancillary Services by DRU-connected OWPP

 DRU connected OWPP can contribute to frequency support and oscillation damping

OWPP Self-energization and Black Start

 OWPP can energize its AC network and might be able to contribute to black start

