

Introduction

- Doubling the collection grid voltage might provide technical or economic benefits
 - We will be seeing many 66 kV col. grids soon
- This change might influence harmonic and transient behaviour of OWPPs
- How the increase of the collection grid voltage level changes the electrical environment characteristic of an OWPP in a wide frequency range
 - What happens to resonances?

Electrical resonance

- Excitation of an electric system containing inductances and capacitances results in oscillations
 - Natural frequency:

$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

 Impedance/admittance frequency sweep often used to find resonances

Electrical resonances (in OWPP)

- Resonance when (periodic) source has frequency similar to the circuit's natural frequency
 - Harmonics: f < 2500 Hz
 - Transients: Hz < f < MHz
- High amplification of voltage/current due to energy exchange between electric and magnetic field
- Harmonic/transient resonances can result in anything from a lack of compliance with a grid code to a component overheating or damage

About the study

- Design and model (a simple) offshore wind power plant
 - Frequency dependent admittance matrix in Matlab, 30 Hz 1 MHz
 - Positive sequence only
- Use of state-of-the art wide-band component models
- Create corresponding models of 33 kV and 66 kV collection grids
- Compare differences and explain where they came from

Assumptions

- 3 models:
 - 33 kV: 8 turbines /radial, 500 mm² (single cross-section)
 - 66 kV: 8 turbines /radial → smaller cable cross-section 95 mm² (single cross-section)
 - 66 kV: 16 turbines /radial → two cross-sections 95 mm² and 500 mm²
- Wind turbine: 6 MW
- Wind farm transformer: 90 MW

Transformer models

- Admittance matrix measurements
 - Wind turbine and wind farm transformers
 - 20 Hz 2 MHz

$$\begin{bmatrix} I_{H}(\omega) \\ I_{L}(\omega) \end{bmatrix} = \begin{bmatrix} Y_{HH}(\omega) & Y_{HL}(\omega) \\ Y_{LH}(\omega) & Y_{LL}(\omega) \end{bmatrix} \begin{bmatrix} V_{H}(\omega) \\ V_{L}(\omega) \end{bmatrix}$$

Admittance scaling to change voltage ratio

$$\begin{bmatrix} I_{H}(\omega) \\ I_{L}(\omega) \end{bmatrix} = \begin{bmatrix} \alpha^{2} Y_{HH}(\omega) & \alpha Y_{HL}(\omega) \\ \alpha Y_{LH}(\omega) & Y_{LL}(\omega) \end{bmatrix} \begin{bmatrix} V_{H}(\omega) \\ V_{L}(\omega) \end{bmatrix}$$

Component models

Cables

- Cable parameters based on material properties and dimensions
- Freq. dependent traveling wave model. Similar to EMTPs

Export grid

- IEEE 118 bus reference system
- Impedance sweep at 138 kV node

January 2019, Trondheim, Norway

Results

- Look at nodes 3-11
- Check driving point impedance/admittance

Resonance freq. vs OWPP's size

- Increased number of strings (1:8)
 - Each string approx. 50 MW
 - Park transformer scaled to total power above 90 MW
- OWPPs with 66 kV have resonances in lower order harmonic levels
- Main resonance frequency
 - Depends mostly on transformer inductance and cable capacitance

Cable capacitance...

...depends on insulation material

$$C = \frac{2\pi\epsilon}{\ln\frac{r_{INS-outer}}{r_{INS-inner}}}$$

$$r_{INS-inner} = \sqrt{rac{A_c}{\pi}}$$
 $r_{INS-outer} = r_{INS-inner} + d_{INS}$

Difference in capacitance

- 66 kV cables capacitance is lower than capacitance of 33 kV cables for corresponding cross-sections
- The larger the conductor crosssection, the larger the difference in capacitance

Transformer inductance

 Leakage inductance proportional to short circuit impedance

$$L_{SC} = \frac{\frac{V_p^2}{S} \cdot \frac{u_k(\%)}{100}}{2\pi f} = \frac{V_p^2}{S} \cdot \frac{u_k(\%)}{100} \cdot \frac{1}{2\pi f}$$

 Doubling the voltage quadruples the inductance, assuming the power and percent of short circuit voltage constant

Conclusions

- Change of voltage of the collection grid influences its resonance frequencies
 - Cable capacitance decreases with increase of voltage
 - Transformer inductance increases with increase of voltage
- Main resonance frequency will be shifted towards lower frequencies
 - Possible harmonic issues
 - Should be investigated by developers

Technology for a better society