NTNU

Norwegian University of Science and Technology

Reducing Rapid Wind Farm Power Fluctuations Using the Modular Multilevel Converter

Abel A. Taffese, Atsede G. Endegnanew, **Santiago Sanchez**, and Elisabetta Tedeschi

Department of Electric Power Engineering, NTNU Sintef Energy Research

January, 2019

Table of Contents

Introduction Outcomes

Modular multilevel converter

Method

Results Simulation Laboratory

Conclusions

H	v	n	C	a	ri	d
	v	-	U	y		u

-Introduction

-Outcomes

Outcomes of the paper

Objective

• To Develop a tool to smooth the rapid power fluctuations of wind farms with MMC.

ц		0	~	e i	4
п٧	Р	C	y		u

-Introduction

Outcomes

Problem description

Offshore wind farms integration

Santiago S. NTNU

HVDC grid		
Introduction		
Outcomes		
		•

Problem description

There are three power fluctuations types that are linked with the wind variability:

- 1. Long-term \longrightarrow seasonal variations.
- 2. Short-term \longrightarrow time scale of minutes to few hours.
- 3. Rapid changes \longrightarrow fast variations (wind gusts, tower shadow, ...).

-Introduction

Outcomes

Problem description

Fig. 1. Power generation of Horns Rev offshore wind farm and onshore wind turbines on January 18, 2005.

P. Sorensen et. al., Power fluctuations from large wind farms, IEEE Trans. on Power Systems, vol 22, no. 3, 2007

Santiago S. NTNU

HVDC grid	
Introduction	
Outcomes	

Problem description

Since short-term and rapid changes are difficult to predict, energy storage solutions are being proposed to smooth the variations out.

LI)	1	n	2	~	e i	4
п	v	υ	C	y		u

-Introduction

Outcomes

Problem description

Multiterminal HVDC grid for wind farms integration.

Network Topologies North Sea MTDC

Radial

.

Mesh or Ring

Table of Contents

Introduction Outcomes

Modular multilevel converter

Method

Results Simulation Laboratory

Conclusions

The aim is to control W in order to smooth the fast power fluctuation.

Santiado	S. NTNU

Santiad	IO S.	NTNU
Januag		

Modular multilevel converter

Santian	0.5	NTNH
Januay	0.0.	

Santiad	IO S.	NTNU
Januag		

- Modular multilevel converter

Capability of an MMC to store energy (W)

Arm energy dynamics:

$$\frac{dW}{dt} = \frac{1}{3C} \left(P_{dc} - P_{ac} \right)$$

W: Arm energy

C: equivalent arm capacitor

P_{dc}: DC power

Pac: AC power

The aim is to control W in order to smooth the fast power fluctuation.

(1)

Table of Contents

Introduction Outcomes

Modular multilevel converter

Method

Results Simulation Laboratory

Conclusions

Н٧	'DC) g	rid
----	-----	-----	-----

-Method

Energy control scheme

Method

Energy control scheme

-Method

Energy control We use a Non-linear control for W.

$$I_{c,ref} = \frac{1}{u_c} \left(\frac{d(W_{ref} + \Delta W)}{dt} + P_{ac} - K(W_{ref} + \Delta W - W) \right)$$
(2)
K: virtual gain.

-Method

Energy control We use a Non-linear control for W.

$$I_{c,ref} = \frac{1}{u_c} \left(\frac{d(W_{ref} + \Delta W)}{dt} + P_{ac} - K(W_{ref} + \Delta W - W) \right)$$
(2)

K: virtual gain.

Table of Contents

Introduction Outcomes

Modular multilevel converter

Method

Results Simulation Laboratory

Conclusions

HVDC grid	
Results	
Simulation	
Simulation	•
Test system	ctuation Constant P Converter 2 Line 12 Line 14 Line 24 Converter 4 Line 34 Line 34
Droop mode	Droop mode

W. Leterme, et al., A new HVDC grid test system for HVDC grid dynamics and protection studies in EMTP-type software, in 11th IET International Conference on AC and DC Power Transmission, 2015.

HVDC grid			
- Results			
Simulation			

HVDC grid		
Results		
Simulation		

HVDC grid	
Results	
Simulation	

When smoothening function is enabled the active powers and dc voltage show improvements

HVDC grid	
Results	
Simulation	

- The arm energy \rightarrow larger variation (ΔW enabled).
- The method is distributed.

Onshore converters (3 and 4) \iff arm energy variation.

ш١		0	~	 4
п,	70	C	y	 u

- Results

- Laboratory

National Smart Grid Laboratory (Norway)

Rated power: 60 KVA Number of sub-modules: 18 sm AC voltage: 400 V DC voltage: 700 V

IVDC grid
Results
Laboratory

HVDC grid	
Results	
Laboratory	

Santiago S. NTNU

HVDC grid	
Results	
Laboratory	

Santiago S. NTNU

HVDC grid	
Results	
Laboratory	

Santiago S. NTNU

Table of Contents

Introduction Outcomes

Modular multilevel converter

Method

Results Simulation Laboratory

Conclusions

- Conclusions

- We developed an energy controller that helps to exploit the energy storage capability of the MMC.
- We validated the energy control technique in the laboratory.
- Fast power fluctuations from wind farms can be compensated applying such controller to the MMCs of the HVDC grid.

- Conclusions

Thank you!

Questions

Santiago S. NTNU

Full scheme

C. D. Barker, R. S. Whitehouse, A. G. Adamczyk, and G. G. Soto, "Low frequency active power oscillation damping using a MMC-VSC HVDC link," in 13th IET International Conference on AC and DC Power Transmission (ACDC 2017), 2017,

A. A. Taffese, E. Tedeschi, and E. de Jong, "A control scheme for utilizing energy storage of the modular multilevel converter for power oscillation damping," in 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017