DAMPING ANALYSIS OF A FLOATING HYBRID WIND AND OCEAN-CURRENT TURBINE

SAIVARUN KOLLAPPILLAI MURUGAN^{1,2}AND FREDRIC OTTERMO¹

THE RYDBERG LABORATORY FOR APPLIED SCIENCES, HALMSTAD UNIVERSITY, SWEDEN.

²WIND ENERGY CAMPUS GOTLAND, UPPSALA UNIVERSITY, SWEDEN.

CONCEPT

- Monopile
- Tripod
- TLP is fixed rigid to the surface
- Spar buoy is considered in this paper

Source: Principal Power. CC BY 4.0

HYWIND SCOTLAND

Table 1. Dimensions and masses for the simulated structure.			
Quantity	Variable	Value	
Nacelle and rotor mass	m_n	370 tons	
Tower mass	m_t	670 tons	
Submerged tube mass	m_s	2300 tons	
Ballast mass	m_b	7700 tons	
Rotor diameter	d	156 m	
Hub height	L_h	100 m	
Submerged tube depth	L _s	78 m	
Mooring depth	L_m	15 m	
Ballast center of mass depth	L _b	70 m	

HYBRID CASE

- Vertical axis ocean-current turbine attached at 78 m depth
- Swept area = 1000 m²
- Spar buoy floating structure

HYBRID CASE

- Wind speed is taken in x direction and ocean current is allowed in 0°, 90°180°
- Thrust force:

$$F_t = \frac{1}{2}C_t A \rho v^2$$

OCEAN DATA

- Ocean current data are taken from 25 m, 40 m, and 60 m
- 60-m distribution assumed at 78 m depth
- Swept area 1000 m², $C_p = 0.35$
- Average production: ~20 kW (0.18 GWh/yr)
- Ocean current turbine is simulated at 0.4 m/s.

DYNAMIC CASE

- Damping Ratio
- The tower is allowed to oscillate from 3°
- Ocean current turbine is receiving ocean-current speeds up to roughly I m/s.

- Std case- Negative damping after rated speed
- Hybrid case improves damping mostly in parallel and antiparallel direction
- Increasing the swept area of ocean current turbine positive damping can be achieved.

RESULT

- Hybrid case is well damped at less than 90 sec below rated wind speed
- Negative damping is introduced in standard case after rated wind speed

8. CONCLUSION & FUTURE REFERENCE

- The damping is improved to a greater amount using with the submerged turbine.
- Increasing the swept area of ocean current turbine positive damping can be achieved.
- Further dynamic analysis and 3d simulations to be conducted.

THANK YOU