Introduction

Droplet erosion as one type of leading edge erosion on wind turbine blades, has been studied, in order to obtain a better understanding of the mechanisms and a resistance surface treatment. The target is to develop tools helping the industry to achieve a 20 year lifetime of blades.

Different coatings were investigated by erosion tests, material characterization and numerical modeling.

Methods and materials

Droplet erosion test facility
- Sample velocity 180 m/s
- Changeable nozzles

Characterization
- Nanoindentation
- Scratch test
- IFM
- SEM

Modelling of droplet impact
- Evaluation of a numerical model to simulate rain erosion
- Rain is modelled using the Smoothed Particle Hydrodynamics (SPH) formulation
- Coating is modelled with Finite Element Method (FEM)

Materials investigated
- Dummy samples for erosion test facility
- HDPE
- PVC
- Protective surface coatings
- 3M™ Wind Protection Tape
- Polyurethane composite coatings
 - 100% PUR
 - PUR with SiC additives (15µm and 20nm)
 - PUR with FunzioNano® additives

Experimental Results

Characterization of TS Polyurethane
Nanoindentation, IFM of scratch test and cross sections.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Modulus (MPa)</th>
<th>Hardness (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% PUR</td>
<td>273.5</td>
<td>20.8</td>
</tr>
<tr>
<td>2.5% FunzioNano</td>
<td>108.8</td>
<td>9.8</td>
</tr>
<tr>
<td>2.5% nanoSiC(20nm)</td>
<td>122.3</td>
<td>10.9</td>
</tr>
<tr>
<td>5.0% coarseSiC(15nm)</td>
<td>115.0</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Erosion test
Erosion pattern obtained at 180 m/s with rain droplets for HDPE.

Erosion rate
The erosion resistance of the sample is evaluated through the erosion rate (loss of mass per time).

Numerical results

The discretisation of the rain field into particles moving independently is limited by the SPH formulation. The particle field is still considered as a continuum medium despite minimized interaction between particles.

After the first impact, a shockwave propagate inside the particle field, disturbing it, spoiling the results.

Conclusions

Experimental
- Test facility provides suitable conditions to perform droplet erosion.
- Thermal sprayed Polyurethane composite coatings shows promising mechanical properties as a protective coating.
- Further characterization of materials are required.

Modelling
- Discrete Element Method (DEM) must be considered as an alternative formulation to simulate the droplets flow.
- A study of single droplet impacts, comparing the stress and pressure distribution with theoretical data to rank the coatings susceptibility to wear can be an alternative study.

Acknowledgements

We would like to thank the people of SINTEF Dept. of Applied Mechanics and Corrosion for great help and advices during our work.

Contact information

Etienne Cheynet
Email: etienne.cheynet@sintef.no
Tel: +47 98029868

Magnus Tyrhaug
Email: tyrhaugen@gmail.com
Tel: +47 98023968