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Abstract

The success of floating wind turbines as feasible
solutions for harvesting offshore wind energy still
depends on significant cost reductions. An
efficient structural design is fundamental, but the
strongly coupled dynamics make accurate
prediction of the global responses and lifetime
estimates  challenging:,.A phenomenon of
particular interest is the' lle rodynamic
damping, an effect resulting from t eraction
between rotor thrust and nacelle motion:”
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a function of the incident wind velocity and the
nacelle period of motion. Special focus is given to
the conditions where the thrust induces negative
damping to the FWT — an effect known to amplify
its surge and pitch motions, with dramatic
consequences for the integrity of mooring lines
and FWT substructure and tower.

Thrust as a function of foand ¢ and nacelle
velocity/acceleration

& =wrg cos{wt)
T(t) = To + Toar(t)

Tvar =fowzgcos{wt + ¢) = fo | cos(g) + : sin(e)

Phase ¢ between nacelle velocity and rotor thrust
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(¢) Detuned with var. reference.

introduces a method to estimate the"
magnitude of the aerodynamic damping effect, as

Objectives
Develop a method to analyze the interaction
between nacelle horizontal motions and rotor
thrust.
Apply the above-mentioned method to a 5
MW wind turbine, with different control
strategies.
Estimate the
coefficients for
conditions.
Provide insight for the preliminary design of
floating wind turbines
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Methodology
Forced oscillation of rigid NREL 5 MW rotor,
modelled in AeroDyn and coupled to controller.
U,, covering the entire above-rated operational
range; oscillation periods from 20.0 s to 160.0 s,
with increments of 1.0 s.
Control strategies: land-based
detuned gains, variable reference.
Prediction of damping values based on the phase
between time-series of nacelle velocity and rotor
thrust.
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Nacelle equations of motion

mi + i+ ke =T(t) w—p
[m - & sin[f,-)]] I+ [e— focos(p)d+ ke =T,

Aer. Damping: by, = —fpcos(o)

Results

¢ When land-based control gains are adopted,
the relative phase between nacelle velocity
and thrust is always lower than 7/2, leading
to negative aerodynamic damping for all
combinations of period and phase.

¢« When the controller is detuned (i.e., the
gains are reduced), the phase may be greater
than 772, for lower wind velocities. The
aerodynamic damping then tends to be
positive, helping to damp the nacelle
motions. As U,, increases, the phase is
reduced and the damping eventually gets
negative again.

¢ The combination of detuned gains and
variable reference significantly increases the
region ¢ > 7/2, meaning higher aerodynamic
damping for all operational conditions.

¢ In general, the aerodynamic damping
coefficient is higher in magnitude for wind
velocities closed to rated.

Conclusions

The aerodynamic damping effect arises from
the relative phase between nacelle motion and
rotor thrust, and is dependent on nacelle
period of motion and incident wind velocity.
Damping may be negative in surge and positive
in pitch, depending on controller gains, wind
velocity and platform natural periods. Blade-
pitch controller detuning is more efficient in
increasing the damping near rated wind
velocity, but its performance is reduced when
the velocity increases. Variable reference
results in more damping for the entire range of
periods and wind velocities.
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Blade-pitch control system

.3
Pl controller: 48 = K,Aw + F\'.j Auwdt

Variable reference: w, = wy (] g .l.-f_i)

Aerodynamic damping coefficient (baer)
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