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Independent “Dimensions” of Fatigue

Aerodynamics: 2-D+
(Wind speed, wind direction, [turbulence])

Sea-surface: 3-D+
(Per spectrum: Wave height, wave period, wave direction)

¥ — — - ey

Subsurface: 2-D
(Current speed, current direction)

Anything else?

Image Credit: Vryhof (C. Mochet)



Estimation of Fatigue Life of an Offshore Structure & Mooring

DNV-OS-J103, DNV-OS-E301

(most accurate and computationally intensive procedure)

1. Numerous specific environmental conditions (load cases)
1.  Woave direction: 8-12 bins
2. Wave height/period: 10-50 bins
3.  Wind speed/direction: 2 Bins
4. Current speed/direction: 2 bins

Time-domain modelling tool

Rainflow counting method to assess range of ‘“sensor’ (e.g., tension in mooring
line, principal stress at specific location)

4. Estimate damage from each load case using properties of material (e.g., S-N, T-N
curve)

5. Estimate fatigue life from sum of damage, taking into account the probability of
occurrence of each load case during design life of structure

Dowling SD, Socie DF. Simple rainflow counting algorithms. Int J Fatigue 1982;4:31-40.

B. Yeter, Y. Garbatov, C. Guedes Soares, Evaluation of fatigue damage model predictions for fixed offshore wind turbine support

structures, Intl J. Fatigue, 2016; 87:71-80 RINCIPL
POWER



Traditional clustering method (visualized in 2D)
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BEGIN:
ALGORITHM



Proposed (Machine Learning-based) Algorithm

1. Load p-dimensional set of multi-decadal environmental conditions

Normalize data to all lie in [O,1].

2. Initialize with a “representative’” set of M clusters (or bins)

3. Run time-domain simulations to estimate fatigue damage

iv.

Modified Maximum Dissimilarity Algorithm (MDA-based) clustering method to associate all
observations with closest cluster Representative

OrcaFAST coupled aero-hydro-
mooring simulations

OrcaFlex: Time domain solver
including first and second-order
hydrodynamics (from WAMIT) and
instantaneous mooring force

FAST: Open-source BEM tool with
linearized structural dynamics

In-house rainflow counting algorithm

Kanner, S., Yu, B., Aubault, A., Peiffer, A., 2018. Maximum Dissimilarity-Based Algorithm for Discretization of Metocean Data into Clusters of Arbitrary Size
and Dimension OMAE2018-77977
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Proposed (Machine Learning-based) Algorithm (cont.)

4. Choose a set of predictors to estimate how environmental conditions effect
fatigue damage

i. Damage =Hg +H2+H3 +T,+T.2+T.3 ..., +HsT 2

5. Run regularized linear regression analysis: Least Absolute Shrinkage and
Selection Operator (LASSO)

i. Come up with a ‘constrained’ model on how fatigue damage depends on predictors

6. Use gradient ascent algorithm to determine direction of maximum damage

i. Pick step-size to determine speed of approach to maxima Conservative

ii. Select clusters that are in ‘high-damage’ areas and spawn N new clusters that may be

more damaging Conservative

iii. Keep number of clusters M constant by creating (M-N) new “representative” clusters using
MDA-based method.

Representative

Re-cluster all observational data using M new clusters.

8. lterate (steps 3-7) to try and find a conservative value of fatigue damage
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normalized y-distance [-]

Step 1-2: Modified Maximum Dissimilarity Based Algorithm
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Step 4-5: Least Absolute Shrinkage and Selection Operator (LASSO)

1. Try to find the best fi s NS T
. ry to find the best fit: )’}l — Z Z'xl,]BJ = le HSl,Hgl,Hsl,er:egvzaesvlr
i=1 j=1 =1
2. For agiven A (A> 0), LASSO algorithm attempts to solve the problem
s L0 B Y
min (vi —Bo—x; B+ ) Bl
Calculated (weighted) Regression coefficients
damage at ith observation e
Regularization parameter
to penalize ‘overfitting’

" observation, with N, parameters
(using some linear combination of the p parameters)

3. Use coordinate descent algorithm to determine “relevant” predictors
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Steps 6: Gradient Ascent & Selection Criteria

1. Move in the direction of a local maximum:

oposednen KT =& +’YV)’(55")

location of cluster /

Previous location
Gradient of best fit

of cluster Learning rate
2. Selection criteria

i. If weighted damage from cluster is in top quintile and calculated damage is

greater than estimated, then set y = O and keep it as a good candidate. Conservative

ii. For all other observations, find the distance between the closest observation
and the proposed (more-damaging) location

iii. If the distance is less than a tolerance AND is in the “right” direction, then it is

a good candidate. Conservative

iv. Count how many observations are good candidates.

v. Randomly select bins from lower (1%-4™) quintiles to remove from candidacy
so that at least 20% of bins are removed from each iteration.

3. Re-run MDA algorithm to ‘top-up’ set (keeping number of bins Representative

constant) PRINCIPLE "
POWER



Step 7. Use weights to associate observations with damaging clusters

1. Euclidian distance of k' observation to it
cluster:
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2. Add in weight function, based upon -
calculated damage:

095+
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3. Re-cluster observations to associate
observations with ““nearest” cluster
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END:
ALGORITHM
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Metocean Data: Swell Waves

Swell Wave Height (m)
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Metocean Data: Wind

Viwina(m/s) vs @ing, FROM which the wind is blowing, 50 Bins
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Metocean Data: Swell Waves, Bin Dependence

H,vsT,, 100 Bins
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Results F/A Tower-Base: Damage Dependence on Wind (50 bins)

Platform Heading: 340°
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1-D Regression (Wind-Direction, 50 bins)

«10° Wind-Dir vs Wind-Speed
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1-D Regression (Wind-Direction, 150 bins)

Platform Heading: 340°

¥ 10° Wind-Dir vs Wind-Speed
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1-D Regression (Wind-Direction) DEL Results

DEL in My (MNm)
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4-D Regression (Wind Speed+Direction, Wind-Sea Tp+Direction)

lteration 1

x10° Wind-Dir vs Wind-Speed
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Results, 4-D Regression
(Wind Direction, Wind Speed, Wave Direction, Wave Tp)

DEL in My (MNm)
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“Quality’’ Measure as a Proxy for Representativeness

Bin Quality (-)
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Wrap-Up

* A machine learning-based algorithm is proposed to try and find the
most representative and conservative set of environmental
conditions to estimate fatigue damage on a floating offshore wind
turbine.

 While a 1-D linear regression (based on wind-direction) is easily
identified, it does not lead to conservative damage estimations.

 A4-D linear regression (based upon wind and wind-seas) leads to a
more wildly behaving fit, but finds better conservativeness.

* The values of representativeness and conservativeness may be
opposed to each other.

* In the future, we hope to improve algorithm to find conservativeness
with smaller number of conditions
* More regularization?

* Learning rate? PRINCIPLE
POWER
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Step 7: Re-cluster observations based on new locations

nhormalized y-distance [-]
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4-D Regression, Wind-Sea Dependence

Iteration O
x 10° Wave-Dir vs Wave-Tp
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Results F/A: Damage Dependence on Wind-Sea (50 bins)
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Metocean Data: Wind-Sea Waves

Wind-Sea Wave Height (m)
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Step 5 (cont.) Coordinate descent determines relevant parameters

1. Again, trying to find B such that:
N
: , 1
min  Rx(f, ) = ~ min [ > (wi—Bo— =z B)> + APu(B)

(Bo,B)€RP+1 (Bo,B)eRPH1

2. The minimum of the residual:

3. Update the guess of B:

1N =) )
B‘ < S(N Zz:l x’bj(yz Yi ), A ~(J — Gy + ze#j 3000
’ 1+ A1 —a) -
z—v ifz>0and v < |z
S(Z, ’)/) sign(2)(|z| —v)+ =< z+~v ifz<0andy < |z

0 if v > |z].

Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear models via coordinate descent. Journal of
Statistical Software, Vol 33, No. 1, 2010. http://www.jstatsoft.org/v33/i0
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4-D Regression, Wind-Sea Dependence

Iteration O
x 10° Wave-Tp vs Wind-Speed
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