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Image Credit: Vryhof (C. Mochet)

Independent “Dimensions” of Fatigue

Aerodynamics: 2-D+ 

(Wind speed, wind direction, [turbulence])

Subsurface: 2-D 

(Current speed, current direction)

Sea-surface: 3-D+ 

(Per spectrum: Wave height, wave period, wave direction)

Anything else?



1. Numerous specific environmental conditions (load cases)

1. Wave direction: 8-12 bins

2. Wave height/period: 10-50 bins

3. Wind speed/direction: ? Bins

4. Current speed/direction: ? bins

2. Time-domain modelling tool 

3. Rainflow counting method to assess range of “sensor” (e.g., tension in mooring 

line, principal stress at specific location)

4. Estimate damage from each load case using properties of material (e.g., S-N, T-N 

curve)

5. Estimate fatigue life from sum of damage, taking into account the probability of 

occurrence of each load case during design life of structure

Estimation of Fatigue Life of an Offshore Structure & Mooring
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Dowling SD, Socie DF. Simple rainflow counting algorithms. Int J Fatigue 1982;4:31–40.

B. Yeter, Y. Garbatov, C. Guedes Soares, Evaluation of fatigue damage model predictions for fixed offshore wind turbine support 

structures, Intl J. Fatigue, 2016; 87:71-80

DNV-OS-J103, DNV-OS-E301

(most accurate and computationally intensive procedure)



Traditional clustering method (visualized in 2D)
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BEGIN:
ALGORITHM



1. Load p-dimensional set of multi-decadal environmental conditions

i. Normalize data to all lie in [0,1].

2. Initialize with a “representative” set of M clusters (or bins)

i. Modified Maximum Dissimilarity Algorithm (MDA-based) clustering method to associate all 

observations with closest cluster

3. Run time-domain simulations to estimate fatigue damage

Proposed (Machine Learning-based) Algorithm
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Representative

i. OrcaFAST coupled aero-hydro-

mooring simulations

ii. OrcaFlex: Time domain solver 

including first and second-order 

hydrodynamics (from WAMIT) and 

instantaneous mooring force

iii. FAST: Open-source BEM tool with 

linearized structural dynamics

iv. In-house rainflow counting algorithm

Kanner, S., Yu, B., Aubault, A., Peiffer, A., 2018. Maximum Dissimilarity-Based Algorithm for Discretization of Metocean Data into Clusters of Arbitrary Size 

and Dimension OMAE2018-77977



4. Choose a set of predictors to estimate how environmental conditions effect 

fatigue damage

i. Damage = HS + HS
2 + HS

3 + TP + TP
2 + TP

3, …, + HS∙TP ?

5. Run regularized linear regression analysis: Least Absolute Shrinkage and 

Selection Operator (LASSO)

i. Come up with a ‘constrained’ model on how fatigue damage depends on predictors

6. Use gradient ascent algorithm to determine direction of maximum damage

i. Pick step-size to determine speed of approach to maxima 

ii. Select clusters that are in ‘high-damage’ areas and spawn N new clusters that may be 

more damaging

iii. Keep number of clusters M constant by creating (M-N) new “representative” clusters using 

MDA-based method.

7. Re-cluster all observational data using M new clusters. 

8. Iterate (steps 3-7) to try and find a conservative value of fatigue damage

Proposed (Machine Learning-based) Algorithm (cont.)
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Conservative

Conservative

Representative



Step 1-2: Modified Maximum Dissimilarity Based Algorithm
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𝑀 = 8

𝑑𝒕𝒐𝒍 = 0.17

Representative



Step 4-5: Least Absolute Shrinkage and Selection Operator (LASSO)
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1. Try to find the best fit: 

2. For a given λ (λ > 0), LASSO algorithm attempts to solve the problem

3. Use coordinate descent algorithm to determine “relevant” predictors

Calculated (weighted) 

damage at 𝑖𝑡ℎ observation

𝑖𝑡ℎ observation, with 𝑁𝑥 parameters

(using some linear combination of the 𝑝 parameters)

Regularization parameter 

to penalize ‘overfitting’

Regression coefficients



Steps 6: Gradient Ascent & Selection Criteria
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1. Move in the direction of a local maximum:

2. Selection criteria

i. If weighted damage from cluster is in top quintile and calculated damage is 

greater than estimated, then set γ = 0 and keep it as a good candidate.

ii. For all other observations, find the distance between the closest observation 

and the proposed (more-damaging) location

iii. If the distance is less than a tolerance AND is in the “right” direction, then it is 

a good candidate.

iv. Count how many observations are good candidates. 

v. Randomly select bins from lower (1st-4th) quintiles to remove from candidacy 

so that at least 20% of bins are removed from each iteration.

3. Re-run MDA algorithm to ‘top-up’ set (keeping number of bins 

constant)

Learning rate

Proposed next 

location of cluster

Gradient of best fit
Previous location 

of cluster

Conservative

Conservative

Representative



Step 7. Use weights to associate observations with damaging clusters
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1. Euclidian distance of kth observation to ith

cluster:

2. Add in weight function, based upon 

calculated damage:

3. Re-cluster observations to associate 

observations with “nearest” cluster

Conservative
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END:
ALGORITHM



Metocean Data: Swell Waves
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Metocean Data: Wind
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Metocean Data: Swell Waves, Bin Dependence
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Results F/A Tower-Base: Damage Dependence on Wind (50 bins)
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Platform Heading: 340°



1-D Regression (Wind-Direction, 50 bins)
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1-D Regression (Wind-Direction, 150 bins)

Platform Heading: 340°



1-D Regression (Wind-Direction) DEL Results
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Conservative?



4-D Regression (Wind Speed+Direction, Wind-Sea Tp+Direction)
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Iteration 0Iteration 1



Results, 4-D Regression 
(Wind Direction, Wind Speed, Wave Direction, Wave Tp)
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Conservative?



“Quality” Measure as a Proxy for Representativeness
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Representative?



Wrap-Up
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• A machine learning-based algorithm is proposed to try and find the 
most representative and conservative set of environmental 
conditions to estimate fatigue damage on a floating offshore wind 
turbine.

• While a 1-D linear regression (based on wind-direction) is easily 
identified, it does not lead to conservative damage estimations.

• A 4-D linear regression (based upon wind and wind-seas) leads to a 
more wildly behaving fit, but finds better conservativeness.

• The values of representativeness and conservativeness may be 
opposed to each other.

• In the future, we hope to improve algorithm to find conservativeness 
with smaller number of conditions

• More regularization?

• Learning rate?



Questions?

Sam Kanner 

skanner@principlepowerinc.com



Step 7: Re-cluster observations based on new locations
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4-D Regression, Wind-Sea Dependence 
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Iteration 0



Results F/A: Damage Dependence on Wind-Sea (50 bins)
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Platform Heading: 340°



Metocean Data: Wind-Sea Waves
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Step 5 (cont.) Coordinate descent determines relevant parameters
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1. Again, trying to find β such that: 

2. The minimum of the residual:

3. Update  the guess of β: 

Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear models via coordinate descent. Journal of 

Statistical Software, Vol 33, No. 1, 2010. http://www.jstatsoft.org/v33/i0



4-D Regression, Wind-Sea Dependence 
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Iteration 0
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