

POWER QUALITY IN WIND-POWERED **OIL AND GAS PLATFORMS**

Kunnskap for en bedre verden ERICK F. ALVES, SANTIAGO S. ACEVEDO, ELISABETTA TEDESCHI Department of Electric Power Engineering

RESEARCH QUESTIONS

- In offshore platforms with high penetration of wind power:
 - 1. Which power quality problems in the time-scale of seconds appear with no power from shore?
 - 2. How energy storage can improve power quality?
 - 3. What influences the sizing of the energy storage?

CONTACT INFORMATION

erick.f.alves@ntnu.no santiago.sanchez@ntnu.no elisabetta.tedeschi@ntnu.no

 $\uparrow \Delta f$ $\uparrow \Delta V$ $\Rightarrow \uparrow (P_m - P_e)$

 $\Rightarrow \uparrow$ governor actuation $\Rightarrow \uparrow$ wear and tear ⇒↑ mechanical stresses Energy storage as inertial and voltage support:

 $\downarrow \Delta f$ oscillations

Shorten $\Delta V/\Delta P_e$ oscillations

↓ wear and tear **↓** mechanical stresses

CONCLUSIONS

- ↑ wind penetration
- $\Rightarrow \downarrow$ power quality
- $\Rightarrow \uparrow$ maintenance $+ \downarrow$ reliability

- Energy storage
- \Rightarrow f and V support
- $\Rightarrow \uparrow$ power quality

- Energy storage MW 3
- \propto max(wind penetration)
- + max(load on/off)

- Energy storage kWh
- ⇒ frequency droop