ØRSTED WIND POWER WAY OF WORKING WITH RD&D

Trondheim,
17th January 2018

Jørn Scharling Holm,
Technology Partnership Manager
Ørsted’s overview of levers for CoE reduction

Multiple levers to drive down cost in offshore wind power

1. Scale
 - Turbines size
 - Sites size
 - Vessel size

2. Innovation
 - Foundation
 - Electrical infrastructure

3. Industrialisation
 - Transition from single supply to multiple global suppliers

Rapid technological development
Wind turbine rotor diameter, year of commissioning

- 80 m: 2002
- 90 m: 2005
- 107 m: 2007
- 120 m: 2011
- 154 m: 2014
- 164 m: 2016
- 180 - 200 m: 2020

Boeing 747, 76m
Ørsted R&D strategy and types of collaboration

1. R&D strategy review

2. Project outcome, scope and impact
 - Project management efficiency and administration
 - Confidentiality and IPR
 - Competence match
 - Internal / external funding

3. Foundation concept
 - Wake models
 - Geoscience models

Types of R&D projects:
- Internal R&D projects
- Small collaborative R&D projects
- Joint Industry Projects
- R&D Programmes
- Large R&D consortium projects
Ørsted R&D strategy and types of collaboration

1. R&D strategy review
 - Foundation concept
 - Wake models
 - Geoscience models

2. Project outcome, scope and impact
 - Project management efficiency and administration
 - Confidentiality and IPR
 - Competence match
 - Internal / external funding

3. Types of collaboration:
 - Internal R&D projects
 - Joint Industry Projects
 - Small collaborative R&D projects
 - R&D Programmes
 - Large R&D consortiums
Ørsted’s R&D Programme

R&D Strategy
- organised in 5 Roadmaps

<table>
<thead>
<tr>
<th>Roadmap 1</th>
<th>Roadmap 2</th>
<th>Roadmap 3</th>
<th>Roadmap 4</th>
<th>Roadmap 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind & Waves</td>
<td>Foundations, Geoscience and Marine</td>
<td>Electrical Infrastructure</td>
<td>WTG O&M</td>
<td>Logistics</td>
</tr>
</tbody>
</table>

- **Roadmap 1: Wind & Waves**
 - Measurements: Lidar, radar, buoys
 - Modelling: Lay-out, AEP, Loads, etc.
 - Power curve validation

- **Roadmap 2: Foundations, Geoscience and Marine**
 - Geotechnical survey methods
 - Monopile/ jacket design methods
 - Soil-structure interaction
 - Underwater noise damping
 - Corrosion protection

- **Roadmap 3: Electrical Infrastructure**
 - Substation design
 - Array and export cables layout and installation
 - Grid simulations
 - Grid connection
 - Ancillary services

- **Roadmap 4: WTG O&M**
 - Component reliability
 - New components
 - New O&M inspection and replacement methods

- **Roadmap 5: Logistics**
 - Logistics modelling and optimisation
 - Accommodation set-up development

Objectives

Enable the pipeline, CoE reduction, Risk reduction, HSE performance, Design standard improvements and competence development
Collaboration with universities and research institutions
- building competences leading to improved R&D

List not exhaustive.
Example on joint demonstration and commercialisation - Carbon Trust OWA

Six research areas - Focusing on everything but the turbine, representing roughly **70% of offshore wind energy costs**

LCOE Breakdown

- Development: 2%
- Construction: 12%
- Finance: 33%
- Installation: 19%
- Foundations: 12%
- Electrical: 12%
- Turbine: 22%

Source: Navigant
Innovation is critical to delivering cost reduction and building supply chain capability

- Balance of support required across technology readiness levels (TRL)
- Forging links between industry and academia can maximise market penetration of new technologies
- Greater information and data sharing can accelerate technology innovation

www.iea-retd.org
Thank you for your attention