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e Real-Time Hybrid Model testing

e OO-Star Wind Floater ReaTHM tests
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Motivation for model tests
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e Common to all offshore structures

 Significant investments should be de-risked and optimized

e Some physical effects are not modelled correctly by engineering tools yet

e Some physical effects are not known yet

e Specific to FOWT

e Complex coupling between wind and wave loads, structure and blade dynamics.

- Issue: the experiments must capture these couplings correctly
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Limitations of classical approaches

e Tests in wave tanks, using fans to generate
the aerodynamic loading

* Challenge 1: ensure a correct wind field above the wave field 2
accuracy, repeatability, traceability

e Challenge 2: ensure a correct mass distribution of the RNA model

Thrust Ay = 2

e Challenge 3: Froude/Reynolds scaling conflict, and rotor re-design by

DTU - 10 MW

® Wind Tunnel Model

"Performance scaling"

Y
Politecnico Milano / 2016
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Real-Time Hybrid Model (ReaTHM?®) testing
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Model testing Aeroelastic simulation
(Ocean Basin) (NREL's FAST code)

Wind

Actuated rotor loads <

2 | Measured platform motions>
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ReaTHM® testing

Strong points of ReaTHM® testing? Any challenges?

e Realistic and controlled rotor loads Multidisciplinary

e Possibility to test extreme conditions /

e Cost-effective and flexible

Physical
substructure \

Control Numerical

system substructure

~_ 7

How to ensure high quality testing? @ SINTEF
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OO-Star Wind Floater model tests ___

e Lifes50+ H2020 project (http://lifes50plus.eu/)

e OO-Star Wind Floater with DTU 10MW turbine

e Tested in Nov 2017 in the Ocean Basin at SINTEF Ocean
e Scale 1/36
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e Environmental conditions of Gulf of Main (depth 130m)

e Objectives:
e Concept performance verification
 Data for num. calibration i

) Develop hybnd methods 00-Star Offshore Wind Floater
LI oiavoLsen

) SINTEF
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OO-Star Wind Floater model tests

Wavemaker

DC motor

Mooring line 1

Wind lines 2}and 5

Wavemaker

Mooring line 2 Mooring line 3

Wind lines § and 3
o A
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Verification: Stepwise approach

e General: Sensitivity study Slyies!
substructure
e Substructure Verification / \

e Verification of complete system

Control Numerical
system substructure

~_
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Verification: Sensitivity study

* How important are each of the turbine load components
for operational and parked conditions?

e Realized by use of Riflex-SIMO-Aerodyn, where
rotor loads are modified one by one.

e Sensitivity to

e aerodynamic sway, heave, pitch, and yaw Description Unit | EC1 EC2 ECG3 EC4
Wind m/s 8.0 1.4 200 44.0
e Gyro moments/centrifugal forces TI o 27 124 95 11.0
e Vertical and horizontal directionality Wind model - NTM NTM NTM NTM (EWM)
_ o Power law coeff, - 0.14 014  0.14 0.11
e 16 loading conditions H, m | 23 25 36 10.9
10 T, S 9.7 0.8 9.9 16.0
Wave spectrum - PM PM PM PM
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Verification: Sensitivity study

e Influence on standard deviation for quantities of interest (DOF1-6,
mooring line tensions, BM and SF)

Removed Operating (EC1-3) Parked (EC4)

Aerodynamic sway small 15% tension and 8% yaw
and pitch

Aerodynamic heave small 12% tension

Aerodynamic pitch +18% pitch and +10% SF | +22% pitch and +22% BM

Aerodynamic yaw -85% on yaw (small) small
Vertical directionality | small 7% pitch and 15%
tension

11 => 6 actuators in two parallel horizontal planes to apply all loads except heave @ sinTer
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Verification of Physical Substructure

e Pullout
* Decay

* Repetitions

0.06

0.055

0.05

z

S

0.035

0.03

Relative damping [-]

0.025

0.02 -

0.015

Surge
Sway

0.01 ‘ ' ‘
0 1 2 3
Mean amplitude [m]

Relative damping [-]

S

o
—_—
N

©
—

o
o
®

o

o

>
T

0.02

— LIFES50+
HYBRID KPN

— -_-.:;-'f'i.’fij.‘.:'t;:"

Physical
/ substructure \
Numerical
substructure

Control
system

~_ 7

—it1
it2
it3

= f/
\ /\/‘/

Mean heave amplitude [m]



\ LIFES50+
HYBRID KPN

-
%/
Verification of Numerical Substructure (s
substructure
Physical part of the experiments emulated in SIMA for o o
verification of system substructure
- Allocation (rotor loads->forces on actuators 1-6)
- Scaling Emulated in SIMA pero simulation

(NREL's FAST code)

- Applied actuators forces

Actuated rotor loads

Measured platform motions>

13
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Verification of Control System

Main objectives:
e Reference tracking

e Disturbance rejection

Through:
- Chirp tests

- Following tests
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Verification of Complete System: Decay

Pitch decay test without ReaTHM system and with the system in following mode

No ReaTHM
Following

) No ReaTHM 34.9
= Following 35.8
Rel. Diff [%] 2.5

400

SINTEF
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Verification of Complete System: Decay

Pitch decay test without ReaTHM system and with the system in following mode
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Verification of Complete System: Repetition

ik

Roll [deg]

Test repetition:
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e DLC1.6

O 0
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e Waves: Pierson-Moskowitz % L I AR AR, N 5W~WMM\(MMM
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@ T

Hs=7.7m and Tp=12.4s

e Wind: NTM 8m/s 5600 5800 6000 5600 5800 6000

Collinear wind

and waves
17
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Conclusions

Pitch decay, with 11.4m/s

ReaTHM® testing is a multidisciplinary method

Sensitivity analysis is key in the design process

Surge [m]

New verification and documentation methods developed

for substructures and complete system 400 600 800 1000 1200 1400 1600 1800 2000
time [s]

Examples shown from Lifes50+ with OO-Star Wind Floater 2

More work needed to address experimental uncertainty
of hybrid tests -> Phase 2 of Lifes50+ in March 2018

(Nautilus-DTU10)
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on their concept of the OO-Star Wind Floater (www.olavolsen.no). SINTEE
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