Wind tunnel experiments on wind turbine wakes in yaw: Redefining the wake width

J. Schottler¹, J.Bartl², F. Mühle³, J. Peinke^{1,4}, L. Sætran², M. Hölling¹

- ¹ ForWind, Institute of Physics, University of Oldenburg, Germany
- ² Norwegian University of Science and Technology, (NTNU), Trondheim, Norway
- ³ Norwegian University of Life Sciences, As, Norway
- ⁴ Fraunhofer IWES, Oldenburg, Germany

jannik.schottler@forwind.de

<u>Numerics</u>

- computational costs
- turbulence models
- validation?

- turbine models are **not** standardized
 - varying blade design / geometry / control...

Research Alliance Wind Energy

- turbine models are **not** standardized
 - varying blade design / geometry / control...

Neunaber, ForWind 60 cm

Schottler, ForWind 58 cm

Campagnolo, Politec Milano 2 m

- turbine models are **not** standardized
 - varying blade design / geometry / control...

- how sensitive are results to facility/turbine model/...?
- experiments lack systematics and comparability

Neunaber, ForWind 60 cm

Schottler, ForWind 58 cm

Medici, KTH Mechanics 25 cm

Campagnolo, Politec Milano 2 m

• turbine models are **not** standardized

Here:

varying blade design / geometry / control...

• how sensitive are results to facility/turbine model/...?

2 turbines, 2 geometries, 2 scales

I facility/setup

• experiments lack systematics and comparability

Neunaber, ForWind 60 cm

Schottler, ForWind 58 cm

Medici, KTH Mechanics 25 cm

Campagnolo, Politec Milano 2 m

- turbine models are **not** standardized
 - varying blade design / geometry / control...

- how sensitive are results to facility/turbine model/...?
- experiments lack systematics and comparability

Neunaber, ForWind 60 cm

Schottler, ForWind 58 cm

2 turbines, 2 geometries, 2 scales I facility/setup

Thorough analyses of wakes from mean velocity to **two-point statistics**, including **yaw misalignment**

Medici, KTH Mechanics 25 cm

Campagnolo, Politec Milano 2 m

increment PDF

Setup & Overview

Turbine	Rotor diameter	Hub diameter	Blockage	TSR	$Re_{ m tip}$	Rotation	c_T
ForWind	$0.580\mathrm{m}$	$0.077\mathrm{m}$	5.4%	6	$pprox 6.4 imes 10^4$	cw	0.97
NTNU	$0.894\mathrm{m}$	$0.090\mathrm{m}$	13%	6	$pprox 1.1 imes 10^5$	ccw	0.87

Full plane, Laser Doppler Anemometer measurements

Turbine	Rotor diameter	Hub diameter	Blockage	TSR	Re_{tip}	Rotation	c_T
ForWind	$0.580\mathrm{m}$	$0.077\mathrm{m}$	5.4%	6	$pprox 6.4 imes 10^4$	cw	0.97
NTNU	$0.894\mathrm{m}$	$0.090\mathrm{m}$	13%	6	$\approx 1.1 \times 10^5$	ccw	0.87

Full plane, Laser Doppler Anemometer measurements

ForWind

Setup & Overview

ForWind0.580 m0.077 m 5.4% 6 $\approx 6.4 \times 10^4$ cw 0.97 NTNU0.894 m0.090 m 13% 6 $\approx 1.1 \times 10^5$ ccw 0.87	Turbine	Rotor diameter	Hub diameter	Blockage	TSR	Re_{tip}	Rotation	c_T
NTNU 0.894 m 0.090 m 13% 6 $\approx 1.1 \times 10^5$ ccw 0.87	ForWind	$0.580\mathrm{m}$	$0.077\mathrm{m}$	5.4%	6	$pprox 6.4 imes 10^4$	cw	0.97
	NTNU	$0.894\mathrm{m}$	$0.090\mathrm{m}$	13%	6	$pprox 1.1 imes 10^5$	ccw	0.87

ForWind

The non-yawed wakes

 $\square NTNU$

The non-yawed wakes

The non-yawed wakes

Shape parameter $\lambda^2(\tau)$

qualitative

Shape parameter $\lambda^2(\tau)$

qualitative

Research Alliance Wind Energy

Shape parameter $\lambda^2(\tau)$

Different radial areas of interest !

ForWind Center for Wind Energy Research

So far:

So far:

- circular wake shape
- intermittent flow regions surrounding the velocity deficit
- increased wake width
- qualitatively comparable results for both turbines

So far:

- circular wake shape
- intermittent flow regions surrounding the velocity deficit
- increased wake width
- qualitatively comparable results for both turbines

- lateral deflection
- curled shape
- vertical transport

- lateral deflection
- curled shape
- vertical transport
 - depends on rotational direction !

- lateral deflection
- curled shape
- vertical transport
 - depends on rotational direction !

- 'curl' observed for all wakes where $~\gamma\pm30^\circ$
- tilt in opposite direction
 - different direction of rotation!

14

Interaction with the ground/tower shadow

in accordance with [Bastankhah & Porté-Agel 2016]

- 'curl' observed for all wakes where $~\gamma\pm30^\circ$
- tilt in opposite direction
 - different direction of rotation!
 - Interaction with the ground/tower shadow

in accordance with [Bastankhah & Porté-Agel 2016]

- lateral deflection
- curled shape
- vertical transport

Research Alliance

Wind Energy

15

© ForWind

- wake measurements with focus on yaw misalignment
 - ► full plane LDA data
 - 2 model wind turbines, differing in size/design
 - ► 3 yaw angles, 3 inflow conditions

16

► > 20 wakes total

- wake measurements with focus on yaw misalignment
 - ▶ full plane LDA data
 - 2 model wind turbines, differing in size/design
 - ► 3 yaw angles, 3 inflow conditions
 - > 20 wakes total
- wake analysis including two-point statistics
- radial wake extension significantly larger when including two-point statistics !
- important for downstream turbine loads
 - -> affecting wake steering application and wind farm layout

© ForWind

- wake measurements with focus on yaw misalignment
 - ▶ full plane LDA data
 - 2 model wind turbines, differing in size/design
 - ► 3 yaw angles, 3 inflow conditions
 - > 20 wakes total
- wake analysis including two-point statistics
- radial wake extension significantly larger when including two-point statistics !
- important for downstream turbine loads
 - -> affecting wake steering application and wind farm layout
- Blind test 5 coming up
- data available for cooperation/validation

16

outlook

Thank you!

17

jannik.schottler@forwind.de

Curl parametrization

Curl parametrization

- 'curl' observed for all wakes where $~\gamma\pm30^\circ$
- further deflection of 'ForWind'-wake
- tilt in opposite direction
 - different direction of rotation!
 - interaction with the ground/tower shadow

in accordance with [Bastankhah & Porté-Agel 2016]

Curl parametrization

• 'curl' observed for all wakes where $~~\gamma\pm30^\circ$

- further deflection of 'ForWind'-wake
- tilt in opposite direction
 - different direction of rotation!
 - interaction with the ground/tower shadow

in accordance with [Bastankhah & Porté-Agel 2016]

Shape parameter $\lambda^2(\tau)$

For
$$-D/2 \le z \le D/2$$

$$P^* = \sum_{i=1}^{10} \rho A_i \, \langle u_i(t) \rangle^3_{A_i,t}$$

For
$$-D/2 \le z \le D/2$$

$$P^* = \sum_{i=1}^{10} \rho A_i \, \langle u_i(t) \rangle^3_{A_i,t}$$

Wake center detection

Turbine	γ	Wake center	Skew angle
NTNU	30°	-0.28D	$pprox -2.6^{\circ}$
NTNU	-30°	0.32D	$\approx 3.0^{\circ}$
ForWind	30°	-0.38D	$pprox -3.6^{\circ}$
ForWind	-30°	0.38D	$\approx 3.6^\circ$

22

DNTNU

Research Alliance Wind Energy

23

[Howland et al. 2016]

[Bastankhah & Porté-Agel 2016]

[Bastankhah & Porté-Agel 2016]

Curled wake observed for drag disc (30mm) model wind turbines (150mm, 580mm, 890mm)

