IF2

DIMSELO KPN Project

Fabio Pierella

DIMSELO Dimensioning Sea Loads (2014-2017)

- Knowledge Building Project
 - Awarded by NFR
- Challenge standard design practice for Offshore Wind Turbines
- Consequences of advanced engineering models
- IFE
 - Project responsible
- DTU, NTNU
 - Academic Partners
- Statoil, Statkraft
 - Industrial partners

Wave models

- Deep water
 - Low steepness (A/λ) of the wave
 - Linear solution is satisfactory
- Shallower waters
 - h = 25m 40m
 - High steepness
 - Nonlinear effects
- Bottom-fixed wind farms are positioned at this depth

 $0.001 \ 0.002 \ 0.005 \ 0.01 \ 0.02$

3

 $\frac{h}{q\,\tau^2}$

 $0.05 \ 0.1 \ 0.2$

Wave models

Deep water

- Low steepness (A/λ) of the wave
- Linear solution is satisfactory
- Shallower waters
 - h = 25m 40m
 - High steepness
 - Nonlinear effects
- Bottom-fixed wind farms are positioned at this depth

4

Diffraction of waves

- Large structures scatter incoming waves
- Leads to reduction in loads
- Important for large monopiles

•
$$T = 2.5 s$$

• $h = 30 m$ $D = \lambda = 10 m$

5

Design calculations via integrated models Current practice

	Fatigue	Extreme loads
Kinematics model	Linear irregular waves	Embedded 50-yr nonlinear wave
Load Model	Morison equation LPT	Morison equation
Challenges	Non-linearity Wave diffraction	Accuracy of non-linearity Directionality

Questions at the base of DIMSELO

Kinematic loads can drive the design

- 1. How conservative are standard kinematics and force models?
- 2. Are the better engineering models? Can they be used?
- 3. Can we quantify the consequences of applying them?

NREL (2016)

DIMSELO

Structure of the project:

WP1 Sea Load Modeling

- Slender body models
- Large cylinders (First order Diffraction)

WP2 Wave Modeling

- Irregular 2nd order waves
- Embedment of nonlinear waves

8

WP3 Aerodynamics VLR

- Coherence of turbulence spectra
- 6p and 2nd order bending moment interaction

IF? DTU ONTNU

WP1 Rainey slender body model

- Based on an energy balance methodology and not on pressure integration considerations
- Three contributions on a submerged structure
 - Distributed force F_d
 - Distributed moment M_d
 - Force on free end F_{pfe}
 - Force on piercing point F_{pfs}

WP1 McCamy-Fuchs load model

Scatter of waves by cylinder

WP1 McCamy-Fuchs load model

Ratio of force predicted by Morison force model over MacCamy-Fuchs force model

WP2 Embedment of streamfunction waves

- **Standard**: 50-yr wave «cut-andpaste» in irregular linear waves
- DIMSELO: «Find and replace» highest linear wave with nonlinear SF wave
- Use of the Hilbert transfer to calculate the embedment period
- Pierella, F., Stenbro, R., Oggiano, L., de Vaal, J., Nygaard, T. A., & Krokstad, J. (2017, July). Stream Function Wave Embedment into Linear Irregular Seas: A New Method Based on the Hilbert Transform. In *The* 27th International Ocean and Polar Engineering Conference. (ISOPE 2017)

IFP

WP2 Second-order irregular short-crested

- Full second-order shortcrested waves
 - Sharma and Dean (1981)
- **Standard**: not possible without simplifications
- **DIMSELO**: Full theory implemented
 - 2D FFT calculation in space

DIMSELO Reference wind turbines

- Site
 - Dogger Bank
- Water depth
 - h = 25m; h = 35m
- Metocean conditions: Statoil
- Foundations
 - 1. XL Monopile 25m
 - 2. XL Monopile 35m
 - 3. Jacket 35m
 - Designed by Kasper Sandal (DTU)

Monopile 25m 10MW

- Turbine
 - DTU 10MW reference wind turbine
 - $H_{hub} = 119.[m]$
- DTU controller
- Tower
 - Steel, onshore tower
- Substructure
 - Designed ad-hoc
- Fatigue and Extreme loads

10 MW Monopile 25m: design characteristics

- 1st bending natural frequency
 - f = 0.23 [Hz]
 - Between 1p and 3p
- Transition piece
 - Point mass z = 19 [m]
- Pile
 - Steel

24.01.2018

Monopile 25m: Soil model

- P-y soil springs
- Logarithmic decrement of 1st tower bending oscillation

•
$$\delta = \frac{1}{n} \ln \frac{x_n}{x_{n+1}}$$

- 1.5 % damping as a fraction of critical
 - $\zeta = \frac{\delta}{2\pi} = 0.015$
- Achieved by installing dampers at the mudline

17

Monopile 25m

Jacket Model

Monopile 25m Tower side-to-side bending

• f = 0.23 Hz

24.01.2018

20

Monopile 25m Rotor edgewise bending

• f = 0.48 Hz

21

Monopile 25m Rotor flapwise with yaw

• f = 0.57 Hz

Monopile 25m Rotor flapwise with tilt

• f = 0.59 Hz

24.01.2018

23

Monopile 25 Collective flapwise

• *f* = 0.62 *Hz*

MetOcean conditions for DIMSELO structures

- Northern sea location
 - Dogger Bank •
- Wind speed
 - conditional on $H_{\rm S}$
 - Aligned with waves
- Turbulence
 - IEC-61400-1 •

•
$$\sum P(H_S, T_P) = 100$$

14 0.00 0.27 0.26 0.00 0.00 0.00 -12 0.00 0.68 0.43 0.00 0.00 0.00 12 0.32 1.31 0.58 0.27 0.22 0.00 - 10 0.59 1.87 0.76 0.46 0.40 0.00 10 -0.85 1.01 2.33 1.11 0.89 0.22 8 1.41 3.43 1.85 2.43 1.03 0.00 Tp[s] 8 -0.00 2.20 5.25 5.86 3.29 0.00 6 9.85 3.52 7.86 0.49 0.00 0.00 6 4 0.95 5.75 0.00 0.00 0.00 8.62 4.78 0.03 0.00 0.00 0.00 4. 2 3.34 0.00 0.00 0.13 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 2 + 0 0 i 2 Ś 5 4 6 Hs[m] Wind Speed@100 [m] [m/s] 5.8 9.1 13.5 17.6 21.0 23.8

Joint Probability

25

Combination of models

Force models

- Rainey force model
- McCamy-Fuchs force model
- Morison force model

- First-order irregular waves
- Second-order irregular waves
- Directional Spread
 - Short crested
 - Long crested

10 simulations per (H_S, T_P) Jonswap spectrum

Example: effect of kinematics 1st vs 2nd order

- Time series 30 min
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	1	2
Kinematics	1st order	2nd order
Load Model	Morison	Morison
Directonal spread	Long crested	Long crested

IF₂

Example: effect of kinematics 1st vs 2nd order

- Histogram
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	1	2
Kinematics	1st order	2nd order
Load Model	Morison	Morison
Directonal spread	Long crested	Long crested

IF₂

Example: effect of kinematics 1st vs 2nd order

- Exceedance probability
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	1	2
Kinematics	1st order	2nd order
Load Model	Morison	Morison
Directonal spread	Long crested	Long crested

A more compact view

- Fatigue IEC-61400-1
 - LC 1.6 \rightarrow operation with NTM
- Simulate N series of 30 minutes
- Extract timeseries of important parameters
 - Mudline Fx [kN]
 - Mudline My[kNm]
 - Blade root Flapwise Mf[kNm]
- DAMAGE EQUIVALENT LOAD (DEL)
 - Regular load that would do the same damage as the irregular one if applied in a 1-min sinusoid

$D \propto DEL^m$

- **D** : damage (inverse of lifetime)
- **DEL** : damage equivalent load
- m : Wöhler exponent (m=3 for steel)

Morison – 1st order – Long Crested (Base case)

Fatigue due to Mudline Fx

 (H_S, T_P) joint probability

14 0.00 0.27 0.26 0.00 0.00 0.00 12 0.00 0.68 0.43 0.00 0.00 0.00 12 0.32 1.31 0.58 0.27 0.22 0.00 - 10 0.59 1.87 0.76 0.46 0.40 0.00 10 1.01 2.33 1.11 0.89 0.85 0.22 တ္ ထ Joint Probability 1.41 3.43 1.85 2.43 1.03 0.00 Tp[s] 2.20 5.25 5.86 3.29 0.00 0.00 3.52 9.85 0.49 7.86 0.00 0.00 6 4 5.75 0.95 0.00 0.00 0.00 8.62 4.78 0.03 0.00 0.00 0.00 4 2 3.34 0.13 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 2 + 0 0 1 2 3 5 4 6 Hs[m]

Itb

MacCamy-Fuchs – 1st order – Long crested

Fatigue due to Mudline Fx

24.01.2018

- Time series
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline Fx

	Morison	Maccamy
Kinematics	1st order	1st order
Load Model	Morison	MacCamy- Fuchs
Directonal spread	Long crested	Long crested

- Histogram
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline Fx

	Morison	Maccamy
Kinematics	1st order	1st order
Load Model	Morison	MacCamy- Fuchs
Directonal spread	Long crested	Long crested

- Exceedance probability
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline Fx

	Morison	Maccamy
Kinematics	1st order	1st order
Load Model	Morison	MacCamy- Fuchs
Directonal spread	Long crested	Long crested

- Power spectral density
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline Fx

	Morison	Maccamy
Kinematics	1st order	1st order
Load Model	Morison	MacCamy- Fuchs
Directonal spread	Long crested	Long crested

IF₂

0.02

TwrBsFx

ltb

Rainey – 2nd order – Swell

Fatigue due to Mudline Fx

MacCamy-Fuchs – 1st order – Swell

Fatigue due to Blade Root Flapwise moment

ltb

Force Model: maccamy fuchs, Order: 1, Spread: Swell

24.01.2018

Example: effect of force model

- Power spectral density
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Blade root Flapwise moment

	Morison	Maccamy
Kinematics	1st order	1st order
Load Model	Morison	MacCamy- Fuchs
Directonal spread	Long crested	Long crested

Rainey – 2nd order – Long crested waves

Fatigue due to Blade Root Flapwise moment

14			1odel: rair Total dan		r: 2, Sprea 0	d:Swell		14			4odel: rair Total dan		r: 2, Sprea 0	ad: Swell			
14	0.000	0.001	0.005	0.000	0.000	0.000	- 0.16	14	0.000	0.000	0.000	0.000	0.000	0.000			
	0.000	0.002	0.008	0.000	0.000	0.000			0.000	0.000	-0.001	0.000	0.000	0.000		- 0.02	?
12 -	0.000	0.004	0.011	0.009	0.011	0.000	- 0.14	12 -	0.000	0.000	-0.002	0.000	-0.000	0.000			
	0.000	0.006	0.016	0.016	0.021	0.000	- 0.12		0.000	0.000	-0.001	0.000	0.000	0.000		- 0.01	L
10 -	0.001	0.008	0.024	0.031	0.044	0.020	- 0.10	10 -	0.000	0.000	-0.000	0.001	0.001	0.000			
[s]	0.001	0.012	0.038	0.086	0.053	0.000	of Wfh1 of Mfh1	[S]	-0.000	0.000	-0.001	0.002	0.001	0.000		0.00	, 1fh1
Tp[s] 8	0.002	0.018	0.125	0.115	0.000	0.000	- 0.08 g	Tp[s]	0.000	0.000	0.000	0.002	0.000	0.000		- 0.00	root ^N
c	0.002	0.034	0.169	0.017	0.000	0.000	- 0.06	c	0.000	0.001	-0.003	0.000	0.000	0.000			
6-	0.004	0.043	0.021	0.000	0.000	0.000		6 -	-0.000	0.001	0.000	0.000	0.000	0.000		0.0	01
	0.006	0.016	0.001	0.000	0.000	0.000	- 0.04		-0.000	0.000	-0.000	0.000	0.000	0.000			
4 -	0.002	0.000	0.000	0.000	0.000	0.000	- 0.02	4 -	0.000	0.000	0.000	0.000	0.000	0.000		0.0	02
	0.000	0.000	0.000	0.000	0.000	0.000	0.00	_	-0.000	0.000	0.000	0.000	0.000	0.000			-
2+ 0)	1 :	2 Hs	3 [m]	4	5	0.00	2 0) :	1		3 [m]	4	5	6	_	

IF2

Morison – 1st order – Short vs Long crested

Fatigue due to Mudline moment around y-axis

24.01.2018

41

- Time series
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	5	20
Kinematics	1st order	1st order
Load Model	Morison	Morison
Directonal spread	Short crested	Long crested

42

- Histogram
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	5	20
Kinematics	1st order	1st order
Load Model	Morison	Morison
Directonal spread	Short crested	Long crested

IF₂

- Power spectral density
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

IF₂

44

- Exceedance probability
- Sea state
 - $H_S = 3.5 [m], T_P = 7.5 [m]$
- Mudline x-wise force

	5	20
Kinematics	1st order	1st order
Load Model	Morison	Morison
Directonal spread	Short crested	Long crested

Conclusions

- DIMSELO has shed light into effect of improved models on OWT dimensioning loads
- It helped understand when it is useful to adopt a more complex wave force or kinematics model
- For example, on a 25m Monopile fatigue load case:
 - 1st order diffraction made a difference on tower base fatigue
 - the blade loads were insensitive to wave load models
 - 2nd order waves do not significantly influence fatigue loads
 - Timeline: Complete the calculations and deliver final report

MacCamy-Fuchs – 1st order – MultiD

Mudline moment My

ltb

Design calculations: today's practice

- Fatigue calculations
- Linear irregular waves
- Morison equation
- Some critical points
 - Non-linearity in irregular waves
 - Non-linearity in the force model
 - What about wave diffraction of large monopiles?

- Extreme loads
- Embedment of a 50-yr nonlinear wave in long-crested waves
- Morison equation
- Some critical points
 - Directionality in the extreme loads?
 - Non-linearity of the force?
 - Statistical significance of extreme load?