











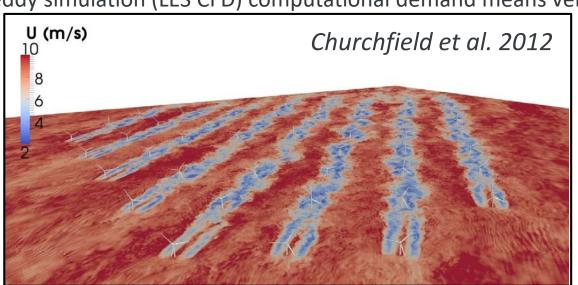
# Calibration & Initial Validation of FAST.Farm Against SOWFA

Jason Jonkman, Ph.D. – NREL

Paula Doubrawa, Ph.D. – NREL

Jennifer Annoni, Ph.D. – NREL

Aditya Suresh Ghate – Stanford University

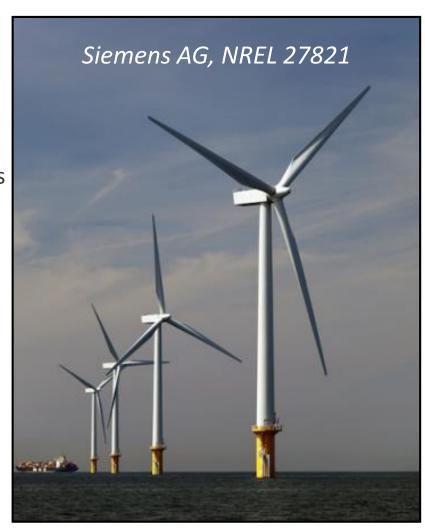

17-19 January 2018

17-19 January, 2018 Trondheim, Norway

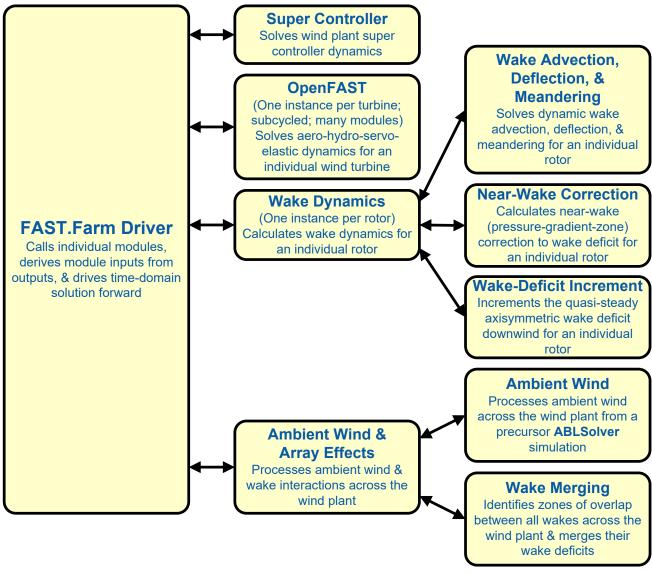
## The Challenge

- Wind industry plagued by underperformance, failures, & expenses:
  - Improvements required in wind-farm performance & reliability, together w/ reduced uncertainty & expenditures to achieve cost targets
  - Improvements eluded by complicated nature of wind-farm design, especially interaction between atmospheric phenomena & wake/array effects
- Range of wind-farm tools exist, but none fully meet engineering needs, e.g.:
  - o **FLORIS**: Steady-state wind-farm performance & controls, but no turbine loads
  - DWM: Both performance & loads, including dynamics, but individual or serial solution limits accuracy & usefulness
  - SOWFA: Large-eddy simulation (LES CFD) computational demand means very few runs

Example **SOWFA** Simulation

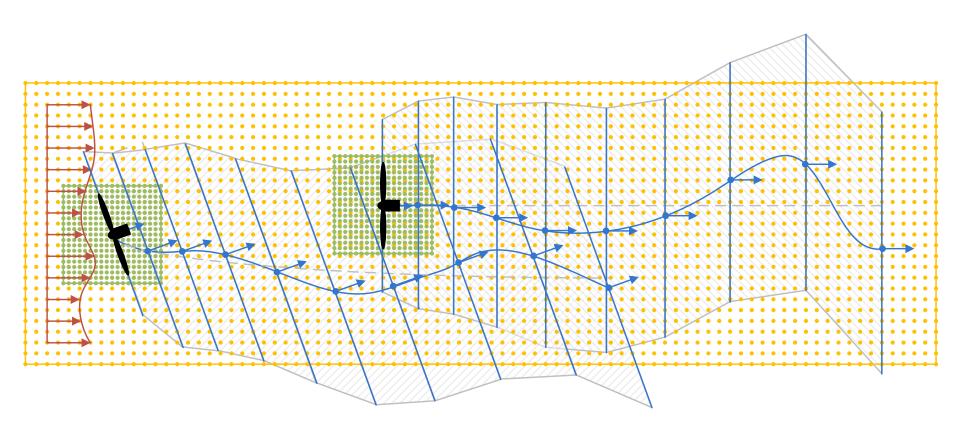



## **Objective & Approach**

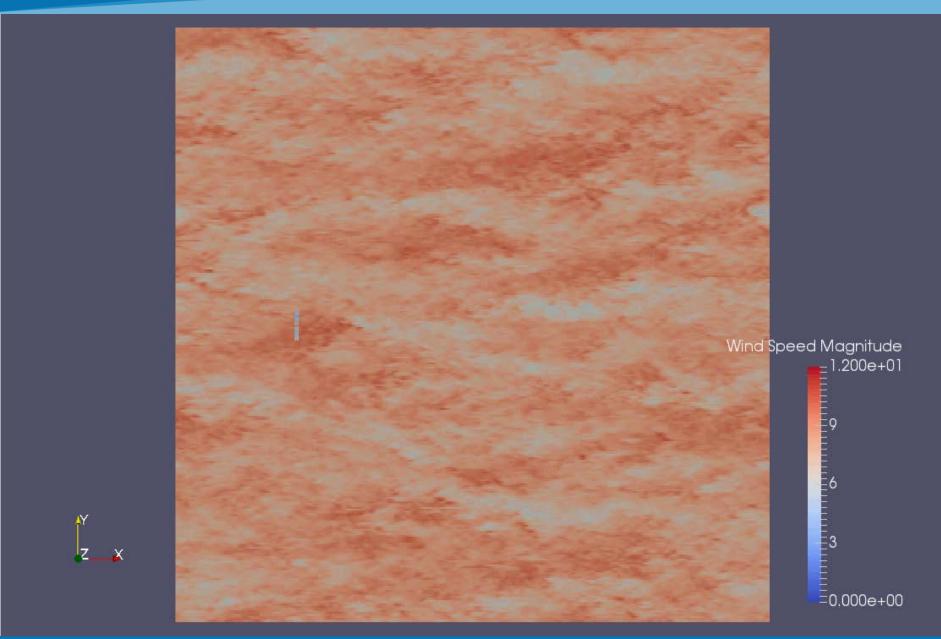

- Objective: Develop, validate, & demonstrate new multiphysics tool (FAST.Farm)
  applicable to engineering problems involving wind-farm design
  - This presentation focuses on calibration
- FAST.Farm aims to balance need for:
  - Accurate modeling of relevant physics for predicting performance & structural loads
  - Maintain low computational cost to support highly iterative & probabilistic design process
     & system-wide optimization

#### FAST.Farm:

- Relies on some **DWM** modeling principles
- Avoids many limitations of existing **DWM** implementations
- Compliments controls capability of FLORIS
- Functions more like SOWFA/Nalu
- Insight from SOWFA simulations being used to support development, parameter calibration, & validation of FAST.Farm

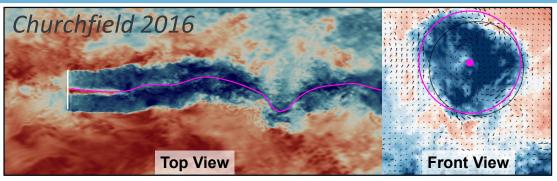



## FAST.Farm Submodel Hierarchy




- FAST.Farm functions nonlinearly in timedomain
- FAST.Farm follows requirements of OpenFAST modularization framework
  - Unique innovations:
    - Use LES precursor for ambient wind
    - Developed new models for wake advection, deflection, & merging
    - Inclusion of a super controller
    - Solve entire wind farm in serial or parallel
    - Calibration of model parameters against HFM

# Wake Planes, Wake Volumes, & Zones of Overlap



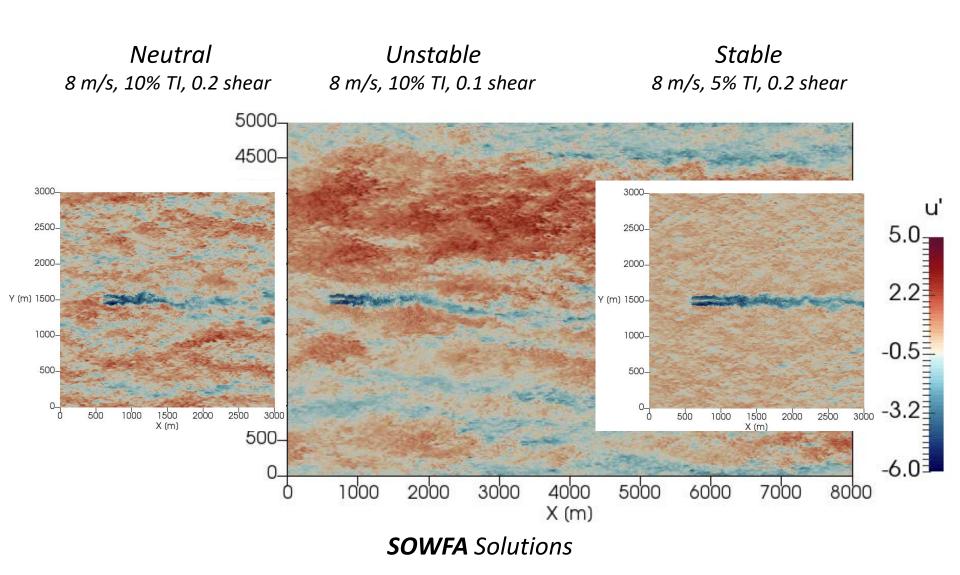

# FAST.Farm-Generated w/ Stepped Yaw – 8m/s Neutral



## Calibration of FAST.Farm Against SOWFA

- FAST.Farm contains many (20)
   parameters that can be used to
   influence wake dynamics
- A calibration approach is used to set default parameter values
- Approach:
  - Identify calibration cases & approach
  - Identify starting values of calibration parameters
  - Run SOWFA & extract wake characteristics
  - Run FAST.Farm w/ varied parameters (sequenced grid search)
  - Identify parameters that minimize wake-deficit & wakemeandering error between
     FAST.Farm & SOWFA



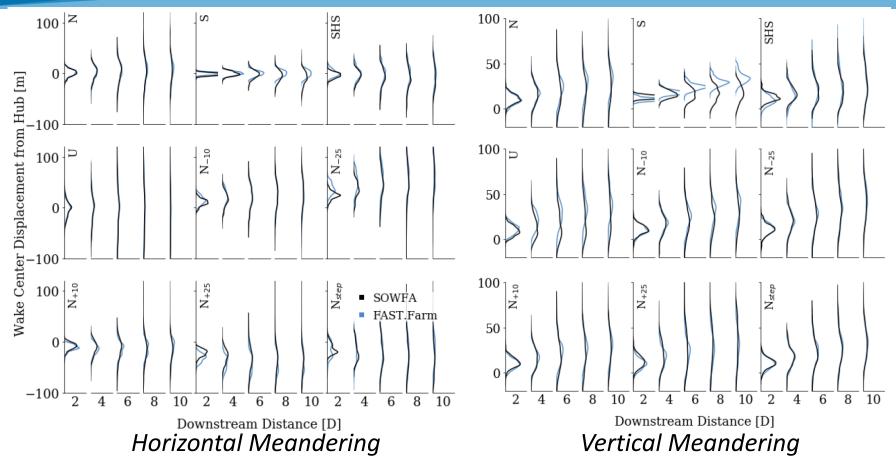

**SOWFA**-Derived Wake Deficit & Centerline

| Case | Name                                                                      | Description                                                        |  |  |  |  |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| 1    | N                                                                         | 8 m/s, neutral, 10% TI, 0.2 shear, normal operation                |  |  |  |  |
| 2    | U                                                                         | 8 m/s, unstable, 10% TI, 0.1 shear, normal operation               |  |  |  |  |
| 3    | S                                                                         | 8 m/s, stable, 5% TI, 0.2 shear, normal operation                  |  |  |  |  |
| 4    | SHS                                                                       | 8 m/s, stable/high shear, 10% TI, 0.4 shear, normal operation      |  |  |  |  |
| 5-8  | N <sub>-25</sub> , N <sub>-10</sub> , N <sub>+10</sub> , N <sub>+25</sub> | 8 m/s, neutral, 10% TI, 0.2 shear, operation under fixed yaw error |  |  |  |  |
| 9    | N <sub>Step</sub>                                                         | 8 m/s, neutral, 10% TI, 0.2 shear, operation with yaw steps        |  |  |  |  |


#### Calibration Approach

| Step | Name       | Cases Run                                                                        | Parameters Calibrated                     |  |  |
|------|------------|----------------------------------------------------------------------------------|-------------------------------------------|--|--|
| 1    | Fixed Yaw  | N, N <sub>-25</sub> , N <sub>-10</sub> , N <sub>+10</sub> , N <sub>+25</sub> (5) | Wake deflection (4)                       |  |  |
| 2    | Eddy       | N, U, S, SHS (4)                                                                 | Near-wake correction & eddy viscosity (3) |  |  |
| 3    | Eddy - Amb | N, U, S, SHS (4)                                                                 | Eddy viscosity for ambient turbulence(4)  |  |  |
| 4    | Eddy - Shr | N, U, S, SHS (4)                                                                 | Eddy viscosity for wake-shear layer (4)   |  |  |
| 5    | Meander    | N, U, S, SHS (4)                                                                 | Spatial averaging (2)                     |  |  |
| 6    | Step Yaw   | N, N <sub>step</sub> (2)                                                         | Low-pass filter (1)                       |  |  |

## **SOWFA Solutions**




### **Calibration Results**



- **FAST.Farm** captures change in wake-deficit evolution w/ downstream distance, but doesn't fully capture change predicted by **SOWFA** across different stability conditions or yaw errors
- Still reviewing, but think **SOWFA** predicts fast wake recover in U due to anisotropic turbulence
- Results suggest that FAST.Farm would benefit from:
  - Different calibration parameters for different stability conditions or yaw errors
  - Improved physics in the eddy-viscosity formulation

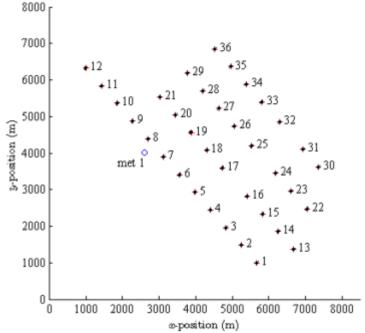
## **Calibration Results**



- FAST.Farm captures overall wake-meandering statistics predicted by SOWFA across different stability conditions, w/ some underprediction for S
  - Meandering in SOWFA for S likely driven by more than just large-scale ambient turbulence (e.g. smaller scales or wake-induced turbulence & boundary layer)
- Comparisons hampered by lack of statistical convergence (30-min/case)

## Ongoing Work – Validation of FAST. Farm Against SOWFA

- Currently running SOWFA simulations—w/ modest variations in inflow & control, independent from those used to support calibration—to validate FAST.Farm
- FAST.Farm calibration parameters are untouched to check their robustness & range of applicability
- Results will be presented at TORQUE 2018


#### Validation Cases

| Case                    | Number<br>of<br>turbines | Turbine<br>spacing | Mean hub-<br>height wind<br>speed | Atmospheric stability | Turbulence<br>intensity | Shear<br>exponent | Yaw error  |
|-------------------------|--------------------------|--------------------|-----------------------------------|-----------------------|-------------------------|-------------------|------------|
| N <sup>6</sup>          | 1                        | -                  | 6                                 | Neutral               | 10%                     | 0.2               | 0°         |
| N <sup>18</sup>         | 1                        | -                  | 18                                | Neutral               | 10%                     | 0.2               | 0°         |
| N <sub>+15</sub>        | 1                        | -                  | 8                                 | Neutral               | 10%                     | 0.2               | 15°        |
| S <sub>+10</sub>        | 1                        | -                  | 8                                 | Stable                | 5%                      | 0.2               | 10°        |
| N3                      | 3                        | 8D                 | 8                                 | Neutral               | 10%                     | 0.2               | 0°         |
| N3 <sub>+10/+10/0</sub> | 3                        | 8D                 | 8                                 | Neutral               | 10%                     | 0.2               | 10°/10°/0° |
| S3                      | 3                        | 8D                 | 8                                 | Stable                | 5%                      | 0.2               | 0°         |
| U3                      | 3                        | 8D                 | 8                                 | Unstable              | 10%                     | 0.1               | 0°         |

## **Next Steps**

- Complete initial validation of FAST.Farm
- Release FAST.Farm as public, open-source software through OpenFAST
- Apply FAST.Farm by including turbine loads in wind-farm controls design/ testing
- Use FAST.Farm with HFM symbiotically in a multi-fidelity approach to support validation, UQ, & design
- Host a meeting of experts (likely @
   TORQUE 2018) to discuss current
   capabilities & uses of mid-fidelity wind farm engineering tools such as FAST.Farm
   & to outline their limitations, needs, &
   future development direction
- Address FAST.Farm limitations through more development





OWEZ Offshore Wind Farm [Churchfield et al 2014]

# Carpe Ventum!

Jason Jonkman, Ph.D. +1 (303) 384 — 7026 jason.jonkman@nrel.gov

www.nrel.gov

