Integrated design optimization of jackets and foundations for offshore wind turbines

Kasper Sandal Chiara Latini Varvara Zania Mathias Stolpe $P = \frac{1}{2} \rho A v^3 C_p$

ABYSS – Advancing BeYond Shallow waterS funded by Innovation Fund Denmark

DTU Wind Energy Department of Wind Energy

This is how optimization can become a valuable tool for structural engineers in offshore wind

This is how optimization can become a valuable tool for structural engineers in offshore wind

How to formulate a numerical optimization problem: Let x be a vector of variables, where we want to minimize f(x)

Constraint functions

How to design a jacket and its foundation with optimization: Let x describe the design, f(x) the cost, and g(x) the engineering limits

The optimization problem has very few design variables, but a high number of nonlinear constraints

[
minimize	$f(\mathbf{x})$
subject to	$g(x) \leq 0$

- o 24 design variables for the jacket
- \circ 3 design variables for the foundation
- o 7k constraints for each static load
 - Stress along all tubular welds
 - Shell buckling & column buckling
 - Foundation capacity
- o 2 frequency constraints

The problem is implemented in the special purpose software JADOP (Jacket Design Optimization)

We make assumptions in the structural analysis which are suitable for the conceptual design phase

- Timoshenko beam elements for the support structure
- Linear 6-dof response for each foundation
- 4 Damage equivalent loads for the fatigue limit state
- o **3 Extreme static loads** for the ultimate limit state
- o Conservative analysis of column buckling
- Stress concentration factors in welded tubular joints

No safety factors are applied in the following examples

0

-20

20

20

For a given design problem (10 MW turbine, 50 m depth, piles), the total mass was minimized to 631 tons (in 5 minutes on a laptop)

Piles in sand	
1.41 m	
50 m	
140 tons	

Soil:	Medium stiff sand
Foundation:	Piles
Design procedure:	API

9

JADOP has a parameterized mesh which makes it a quick task to modify for example the leg distance

When support structures with different leg distance are optimized, jacket mass and foundation mass show opposite design trends

DTU

The optimal leg distance will depend on for example the soil stiffness

But several other aspects of the anchoring will also influence the design problem

We have looked at:

- Piles & suction caissons
- Sand & clay
- Varying soil stiffness
- Different design procedures for piles

Suction caisson

Source: 4coffshore

Source: SPT Offshore

The design considerations are "translated" into an optimization problem, DTU and it is now a quick task to generate design trends

The figure below shows how jacket mass and foundation mass change as functions of both leg distance and soil stiffness (A=stiff, D=soft)

The preferred leg distance now depends on the soil stiffness, and perhaps also the desired fundamental frequency

Structural optimization is used to automate the "well-defined" engineering tasks of conceptual support structure design

With a tool like JADOP it is then quick & easy to investigate how input conditions influences the design

