

A numerical study of a catamaran installation vessel for installing offshore wind turbines

Zhiyu Jiang January 18, 2018

Postdoctoral researcher

Department of Marine Technology

Centre for Marine Operations in Virtual Environments (SFI MOVE) Norwegian University of Science and Technology

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4. Conclusion

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4. Conclusion

Background

Installation methods - foundation

Tripod installation using a jack-up vessel (http://worldmartimenews.com)

Jacket installation using a floating vessel (https://www.boskalis.com)

Monopile installation (www.seawayheavylifting.com.cy)

Installation methods - rotor blade

Bunny ear Vatenfall Full rotor Dong Energy Single-blade installation Fred Olsen Wind Carrier

Installation methods - full assembly

Saipem 7000 Statoil AS

Novel installation vessel Ullstein AS

Purpose of numerical simulation

- Design and testing of novel installation methods
- Response-based prediction of limiting operational conditions
- Online decision support for offshore installations

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4.Conclusion

The catamaran installation concept

L.I. Hatledal et al. (2017)

Challenges of the concept

- Hydrodynamics hydrodynamic coupling, sloshing, viscous effect
- Structural dynamics coupled motion modes, mechanical coupling
- Automatic control station keeping of the vessel, active ballast system motion tolerance and control, landing force control

Installation procedure

(b)

(d)

Monitoring the relative motions

SFI Marine Operations

Properties of the catamaran

Catamaran with four wind turbines		S [i=
Length overall (m)	L_{OA}	144
Breath moulded (m)	В	60
Spacing between monohulls at waterline (m)	L_{hull}	38
Draft (m)	T_c	8.0
Displacement mass (tonnes)	D	18502.9
Vertical center of gravity above baseline (m)	KGc	28.6
Transverse metacentric height (m)	GMt	66.4

Properties of the spar

Diameter at top (m)	L_{bd}	9.5
Diameter at waterline (m)	M_{bd}	14
Draft (m)	T_s	70
Displacement mass (tonnes)	D	11045
Vertical center of gravity above baseline (m)	KGs	30
Vertical fairlead position below waterline (m)	Z_f	15
Body origin in global coordinate system	(X_s, Y_s, Z_s)	(0,0,0)
Total length of mooring line (m)	L_{moor}	680
Diameter of upper chain segments (mm)	D_{up}	132
Diameter of lower chain segments (mm)	D_{low}	147

1. Introduction

2. The catamaran installation concept

3. Numerical simulation Time-domain simulation Frequency-domain simulation 4. Conclusion

D NTNU

Time-domain simulation

WADAM: Hydrodynamic analysis of the two-body

HAWC2: Calculation of the wind forces on the turbine assemblies

SIMO: Time-domain coupled analysis Catamaran with dynamic positioning system; spar with mooring lines; sliding grippers between catamaran and spar

Modelling of the hydrodynamics

Modelling of the mooring system SFI Marine Operations Mating point 20 m Mean water level ΊXs Os 50 m 70 m anchor2 630 m 110 m 30 m COG Ys $\beta = 0 \text{ deg}$ anchor1 Dèltà lines β =30 deg anchor3 640 m

Vertical view

Horizontal view

Frequency-domain approach

s

1. Hydrodynamic analysis of the two-body system

2. Short-term motion prediction of the mating point by using Response Amplitude Operators

Magnitude of the pitch RAOs

Catamaran

Environmental conditions

DNTNU

Results - relative surge motion

Hs=2.0 m, β =0 deg

Results - relative roll motion

Hs=2.0 m, β =90 deg

Conclusion

- A numerical modelling approach of the catamaran installation concept is introduced.
- Future work is needed for implementing the active heave compensator, dimensioning of the catamaran, active ballast system, etc.

D NTNU

Acknowledgements

- Zhen Gao
- Karl Henning Halse
- Peter Christian Sandvik
- Zhengru Ren

