A numerical study of a catamaran installation vessel for installing offshore wind turbines

Zhiyu Jiang
January 18, 2018

Postdoctoral researcher
Department of Marine Technology
Centre for Marine Operations in Virtual Environments (SFI MOVE)
Norwegian University of Science and Technology
Outline

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4. Conclusion
Outline

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4. Conclusion
Background

Bottom-fixed

Floating

Water depth:

<20m <40m 50-70m >50-100m

GBF
Monopile
Tripod
Jacket
TLP
Semi-sub
Spar

blades
nacelle
tower
TP
Capital expenditure of offshore wind

Installation methods - foundation

Tripod installation using a jack-up vessel
(http://worldmartimenews.com)

Jacket installation using a floating vessel
(https://www.boskalis.com)

Monopile installation
(www.seawayheavylifting.com.cy)
Installation methods - rotor blade

- Bunny ear
 - Vatenfall

- Full rotor
 - Dong Energy

- Single-blade installation
 - Fred Olsen Wind Carrier
Installation methods - full assembly

Saipem 7000
Statoil AS

Novel installation vessel
Ullstein AS
Purpose of numerical simulation

• Design and testing of novel installation methods

• Response-based prediction of limiting operational conditions

• Online decision support for offshore installations
Outline

1. Introduction

2. The catamaran installation concept

3. Numerical simulation

4. Conclusion
The catamaran installation concept

L.I. Hatledal et al. (2017)
Challenges of the concept

• Hydrodynamics
 hydrodynamic coupling, sloshing, viscous effect

• Structural dynamics
 coupled motion modes, mechanical coupling

• Automatic control
 station keeping of the vessel, active ballast system
 motion tolerance and control, landing force control
Installation procedure
Monitoring the relative motions

Mating point
Properties of the catamaran

Catamaran with four wind turbines

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length overall (m)</td>
<td>L_{OA}</td>
<td>144</td>
</tr>
<tr>
<td>Breath moulded (m)</td>
<td>B</td>
<td>60</td>
</tr>
<tr>
<td>Spacing between monohulls at waterline (m)</td>
<td>L_{hull}</td>
<td>38</td>
</tr>
<tr>
<td>Draft (m)</td>
<td>T_c</td>
<td>8.0</td>
</tr>
<tr>
<td>Displacement mass (tonnes)</td>
<td>D</td>
<td>18502.9</td>
</tr>
<tr>
<td>Vertical center of gravity above baseline (m)</td>
<td>KGC</td>
<td>28.6</td>
</tr>
<tr>
<td>Transverse metacentric height (m)</td>
<td>GMT</td>
<td>66.4</td>
</tr>
</tbody>
</table>
Properties of the spar

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter at top (m)</td>
<td>l_{bd}</td>
<td>9.5</td>
</tr>
<tr>
<td>Diameter at waterline (m)</td>
<td>m_{bd}</td>
<td>14</td>
</tr>
<tr>
<td>Draft (m)</td>
<td>t_s</td>
<td>70</td>
</tr>
<tr>
<td>Displacement mass (tonnes)</td>
<td>D</td>
<td>11045</td>
</tr>
<tr>
<td>Vertical center of gravity above baseline (m)</td>
<td>Kg_s</td>
<td>30</td>
</tr>
<tr>
<td>Vertical fairlead position below waterline (m)</td>
<td>Z_f</td>
<td>15</td>
</tr>
<tr>
<td>Body origin in global coordinate system</td>
<td>(X_s,Y_s,Z_s)</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>Total length of mooring line (m)</td>
<td>L_{moor}</td>
<td>680</td>
</tr>
<tr>
<td>Diameter of upper chain segments (mm)</td>
<td>D_{up}</td>
<td>132</td>
</tr>
<tr>
<td>Diameter of lower chain segments (mm)</td>
<td>D_{low}</td>
<td>147</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. The catamaran installation concept

3. Numerical simulation
 Time-domain simulation
 Frequency-domain simulation

4. Conclusion
Time-domain simulation

WADAM: Hydrodynamic analysis of the two-body system

HAWC2: Calculation of the wind forces on the turbine assemblies

SIMO: Time-domain coupled analysis
Catamaran with dynamic positioning system; spar with mooring lines; sliding grippers between catamaran and spar
Modelling of the hydrodynamics
Modelling of the sliding grippers
Modelling of the mooring system
Frequency-domain approach

1. Hydrodynamic analysis of the two-body system

2. Short-term motion prediction of the mating point by using Response Amplitude Operators
Magnitude of the pitch RAOs

Spar

Catamaran
Environmental conditions

Hs = 2.0 m Tp = 6, 8, ..., 12 s \(\beta = 0, 90 \text{ deg} \)
Results - relative surge motion

Hs=2.0 m, β=0 deg
Results - relative roll motion

Hs=2.0 m, $\beta=90$ deg
Conclusion

• A numerical modelling approach of the catamaran installation concept is introduced.

• Future work is needed for implementing the active heave compensator, dimensioning of the catamaran, active ballast system, etc.
Acknowledgements

- Zhen Gao
- Karl Henning Halse
- Peter Christian Sandvik
- Zhengru Ren