REDWIN – REDucing cost in offshore WINd by integrated structural and geotechnical design

EERA DEEPWIND January 2018
Skau, K.S., Senior engineer, NGI and PhD candidate, NTNU
Kaynia, A.M., Technical Expert and Professor II, NTNU
Page, A.M., PhD Candidate, NTNU
Løvholt, F., Senior Specialist, NGI
Norén-Cosgriff, K., Head of Section CGM, NGI
Sturm, H., Discipline leader Offshore renewables, NGI
Jostad, H.P., Technical director offshore energy NGI and Professor II, NTNU
Nygard, T.A., Senior researcher IFE and Professor, NMBU
Andersen, H.S., Structural Engineer, Dr. Tech Olav Olsen
Eiksund, G., Professor, NTNU
Havmøller, O., Senior researcher, Statoil ASA
Strøm, P., Lead Geotechnical Engineering, Statoil ASA
Eichler, D., Senior Lead Structural Engineer, Vattenfall
REDWIN

- 4-year research project
- Sponsors: NFR, Statoil, Vattenfall, Statkraft
- Partners: NGI, NTNU, IFE, Dr. Tech. Olav Olsen
- 16 mill NOK
- Bottom fixed OWT
- 1 year left
Load frequencies and eigen frequency

Blade load frequencies (1P and 3P)
- - - - Wind spectrum (Kaimal)
- - - - - - Wave spectrum (JONSWAP, Hs = 2.4 m)

Turbines:
DTU 10 MW
Vestas V164 (8MW)
Siemens SWT-6.0-154 (6MW)
Siemens SWT-3.6-107 (3.6 MW)
Vestas V90 and V91 (3MW)

The importance of the foundation
The importance of the foundation

Integrated dynamic analyses

- Aero dynamics
- Hydro dynamics
- Struktural dynamic
- Turbine controller (pitch)
- Soil/foundation response
Geotechnical involvement

- SI/labotory testing
- Site soil interpretation
- Compute foundation response
- Implement in integrated analyses
- Integrated analyses

REDWIN
Current practise

- p-y springs (API, PISA) for monopiles
- Linear elastic springs for shallow fundations

![Graph showing the comparison between γ/γ_f ratios and τ/τ_f ratios with iterations for structural analyses and foundation stiffness updates.](image)
REDWIN model principles

- Application oriented models, such that the choice of model appear intuitive.
- User interface understandable for practitioners.
- General models, adaptable to different ground conditions.
- The models have to work in time domain analyses.
Monopiles

Soil–support model

\(p, y \)

\(\rho \)

\(y \)

Foundation–structure interface

Stiffness

Damping

Load

Foundation and substructure Model applicable Loading regime

Redwin model 1

Distributed 1D model to be applied to any DOF.

Redwin model 2

HM-loading

Redwin model 3

VHM-loading

Soil–support model

Foundation model
Monopiles

Foundation and substructure

Model applicable

Loading regime

Redwin model 1

Distributed 1D model to be applied to any DOF.

Redwin model 2

HM-loading

Redwin model 3

VHM-loading

Soil – support model

Foundation – structure interface

Seabed and foundation – structure interface

Foundation model
Gravity based foundations

Foundation – structure interface

Foundation model

Redwin model 1
Distributed 1D model to be applied to any DOF.

Redwin model 2
HM-loading

Redwin model 3
VHM-loading

Soil – support model

Foundation – structure interface

Foundation model
Bucket foundations

Foundation – structure interface

Foundation model

<table>
<thead>
<tr>
<th>Foundation and substructure</th>
<th>Model applicable</th>
<th>Loading regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redwin model 1</td>
<td>Distributed 1D</td>
<td>HM-loading</td>
</tr>
<tr>
<td></td>
<td>model to be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>applied to any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOF.</td>
<td></td>
</tr>
<tr>
<td>Redwin model 2</td>
<td>HM-loading</td>
<td></td>
</tr>
<tr>
<td>Redwin model 3</td>
<td>VHM-loading</td>
<td></td>
</tr>
<tr>
<td>Foundation and structure</td>
<td>Model applicable</td>
<td>Loading regime</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Redwin model 1</td>
<td>Distributed 1D model to be applied to any DOF.</td>
</tr>
<tr>
<td></td>
<td>Redwin model 2</td>
<td>HM-loading</td>
</tr>
<tr>
<td></td>
<td>Redwin model 3</td>
<td>VHM-loading</td>
</tr>
</tbody>
</table>
Model demonstration

a)

b)

c)

\[v, H, M \]

\[U_{xx}, U_{yy}, U_{zz} \]

a)

\[2M/D (kN) \]

\[0 \]

\[1000 \]

\[0 \]

\[-1000 \]

\[-1000 \]

\[-2000 \]

\[0 \]

\[100 \]

\[0 \]

\[500 \]

\[600 \]

Time (s)
Foundation damping

\[D_{\text{found}} = \frac{\sum (V \cdot E_h)}{4\pi \sum (V \cdot E_p)} \]
Effect of foundation behaviour on fatigue

- Mode A: p-y elements
- Model B: Lumped linear elastic
- Model C: Lumped linear elastic with viscous damper
- Model D: Lumped nonlinear REDWIN model 1

Comparison of model and measured response

Normalized PSD

Revised analyses with Redwin model 2

Design prediction range
Summary and conclusions

- The models and tools developed in REDWIN seems to contribute to more accurate descriptions of foundations in design.
- They include damping, which is often neglected.
- The knowledge of soil and site can be better utilized in design.
- Improved accuracy reduce costs.
- Currently working on cost reduction effects in more detail.
Thanks to:

The Norwegian research council, Statoil, Vattenfall og Statkraft

..and co-authors and contributors!
And thanks for your attention!