

Welcome

WIND. ASSURING CONFIDENCE THROUGH COMPETENCE

Analysis, comparison and optimization of the logistical concept for wind turbine commissioning

Dr. Marcel Wiggert

Agenda & Goals

- \prec Topic and challenges
- \prec Introduction WaTSS concept
- -< Approach
- -< Case study: Commissioning

IWES

Торіс

-〈 Title:

Analysis, comparison and optimization of the logistical concept for wind turbine commissioning

- -< Conditions:
 - → Weather risk of the WTG installation
 - \prec Optimization of the number of commissioning teams
 - ✓ Comparison of 3 different logistical concepts
- \prec Decision criteria: lowest cost and risks

Challenge

IWES Modeling Approaches

24.01.2018

Information Profile

WaTTS – Method <u>Weather Time Series Scheduling</u>

-< Consideration of:

- → Task sequence
- ≺ Contingencies in guidelines
- ✓ Different weather restrictions

 Calculation of project durations and their probabilities

Virtual Project Test Center Yearly Simulation

Virtual Project Test Center Continuous Simulation

Duration vs. Start Day

COAST – Software

24.01.2018

IWES

Simulation Concept

- 1. Installation dates of the wind turbines per analyzed year Goal: Definition commissioning start dates
- 2. Success of the commissioning work for every day Goal: Definition of the turbine accessibility
- **3.** Post Processing: e.g., MS Excel or MATLAB *Goal: Analyzing the scenarios*
 - (1) Calculation of the commissioning duration per turbine and year under consideration of weather and resource constraints
 - (2) Calculation of the required vessel days and costs
 - 3 Evaluation and presentation of the results

Case Study: IWES Baltic Introduction

IWES OWP Baltic	2
-----------------	---

Boundary conditions	Assumption
Number of turbines	60
Port distance	40km
Start date	2020-07-01
Commissioning (1 Team)	160h/turbine (net)
Team costs	3,000 Euro/day
Opportunity costs	3,000 Euro/day per turbine
Weather data	coastDat v1 (1958–2002) [4]
Duration of installation incl. weather risks (P50)	100 days (COAST)

→ Weather parameters:

- → Significant Wave Height (h_s)
- → Wind Speed (U)

WTG Installation Strategy

WTG Installation Strategy only Anfang Vorgangsname Dauer Fertig stellen 6 Sam 01, Jul Son 02, Jul Mon 03, Jul Die 04. Jul Mit 05, Jul Don 06, Jul 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 **6** 1 WTG Installation 2100 Std. Sa 01.07.17 00:00 Di 26.09.17 12:00 2 2 ÷ WTG 1 61 Std. Sa 01.07.17 00:00 Mo 03.07.17 13:00 2 3 **6** Loading in Harbour 32 Std. Sa 01.07.17 00:00 So 02.07.17 08:00 2 2 4 Crain Works 8 Std. Sa 01.07.17 08:00 Sa 01.07.17 16:00 2 9 5 Jack down 0 Std. **02.07**. So 02.07.17 08:00 So 02.07.17 08:00 2 4 6 Transit to Site 4 Std. So 02.07.17 08:00 So 02.07.17 12:00 2 **P** 7 Jack Up 4,5 Std. So 02.07.17 12:00 So 02.07.17 16:30 2 8 2 WW Tower Installation 7,5 Std. So 02.07.17 16:30 Mo 03.07.17 00:00 2 9 **6 Tower Installation** 4 Std. So 02.07.17 16:30 So 02.07.17 20:30 2 2 10 WW Nacelle 7,5 Std. So 02.07.17 20:30 Mo 03.07.17 04:00 2 4 11 Nacelle Installation 4 Std. So 02.07.17 20:30 Mo 03.07.17 00:30 2 12 🖓 WW Blade Installation 11,5 Std. Mo 03.07.17 Mo 03.07.17 12:00 00:30 4 ۲ 13 Blades 1-3 8 Std. Mo 03.07.17 00:31 Mo 03.07.17 08:30 7 14 9 Jack Down+transit to next 4,5 Std. Mo 03.07.17 Mo 03.07.17 13:00 site 08:30 4 2 15 + WTG 2 25 Std. Mo 03.07.17 13:0 Di 04.07.17 14:00 2 **P** 24 + WTG 3 25 Std. Di 04.07.17 14:00 Mi 05.07.17 15:00 2 2 33 + WTG 4 29 Std. Mi 05.07.17 15:00 Do 06.07.17 20:00

Scenario Analysis

10h/day on turbine

- Costs: 4,000 €/d
- 8h/day on turbine

15

10h/day on turbine

Scenario Analysis

SCENARIO CTV

CREW TRANSFER VESSEL

Vorgangsname 🗸	Dauer 💂
12/7 CTV Base Case	12 Std.
1. WTG - Fahrt 1	12 Std.
Transfer to site	2 Std.
Comm Works	8 Std.
Transfer back to harbour	2 Std.

$H_{s} = 1.5m;$ **ASSUMPTIONS**

- 3 Teams on board; 12h/7 days
- Costs: 4,000 €/d
- 8h/day on turbine

SCENARIO HV

HOTEL VESSEL

Vorgangsname	+	Dauer 🚽
Accommodation Vessel 24/7		24 Std.
1. WTG - Fahrt 1		24 Std.
Transfer to site		1 Std.
Comm Works		10 Std.
Transfer back to Vessel		1 Std.
Transfer to site		1 Std.
Comm Works		10 Std.
Transfer back to Vessel		1 Std.

- $H_{s} = 1.5m$
- 20 Teams; 24h/7 days
- Costs: 20,000 €/d
- 10h/day on turbine

SCENARIO SOV

SERVICE OPERATION VESSEL

Vorgangsname 👻	Dauer 🚽
DP2 Vessel	24 Std.
Fahrt 1	24 Std.
Transfer to site	1 Std.
Comm Works	10 Std.
Transfer back to Ve	1 Std.
Transfer to site	1 Std.
Comm Works	10 Std.
Transfer back to Ve	1 Std.

$H_s = 2.5m, U = 10 m/s$

- 20 Teams; 24h/7 days
- Costs: 24,000 €/d
- 10h/day on turbine

Case Study: IWES Baltic – Results

Conclusion

- Post processing extends capabilities of the WaTSS method
- Approach to consider the availability of transport (resources) for the commissioning teams
- Important to consider risks and cost simultaneously

✓ Case Study: "IWES Baltic"

Acknowledgements Fraunhofer IWES is funded by the:

Federal Republic of Germany

Federal Ministry for Economic Affairs and Energy

Federal Ministry of Education and Research

European Regional Development Fund (ERDF):

Federal State of Bremen

- → Senator of Civil Engineering, Environment and Transportation
- ✓ Senator of Economy, Labor and Ports
- ✓ Senator of Science, Health and Consumer Protection
- Bremerhavener Gesellschaft f
 ür Investitions-F
 örderung und Stadtentwicklung GmbH

Federal State of Lower Saxony

Free and Hanseatic City of Hamburg

References

Thank You For Your Attention

Any questions?

marcel.wiggert@iwes.fraunhofer.de

Background

DETAILED INFORMATION

Detailed Analysis

Risk Efficiency

Risk efficiency concept by CHAPMAN/WARD 2003, based on MARKOWITZ portfolio theory

Rule: "that the investor does (or should) consider expected return a desirable thing and variance of return an undesirable thing" (MARKOWITZ 1952, S.77)

Primary and Secondary Weather Risks **Duration vs. Start Day**

Weather Impact – Example Accessibility (July – December)

h_s = 1.5m; Weather Window d= 10h; Data Model: HZG CoastDat v1 (1958–2007)

24.01.2018