Using a Langevin model for the simulation of environmental conditions in an offshore wind farm

Helene Seyr and Michael Muskulus

January 18, 2018
Outline

- Introduction
- Methodology
- Data
- Results
- Conclusions
Introduction

- O&M (cost) optimization is focus of research
- Many simulation models/optimizations rely on artificially generated weather time series to test different strategies
- Novel approach to model significant wave height and wind speed
- Langevin process:
 - Equations fitted to the data
 - Used to generate artificial weather
Langevin process

Deterministic contribution

\[F = D^{(1)} \]

Stochastic contribution

\[G = \sqrt{D^{(2)}} \Gamma_t \]
Data

ECMWF:
- Re-analysis
- 6h resolution
- Dogger Bank wind farm
- 37 years

Fino 1:
- Measurement from met-mast and buoy
- 10min/30min means
- Alpha Ventus wind farm
- 6 years
Results II

Helene Seyr

Langevin process for weather modeling
Results III

Helene Seyr

Langevin process for weather modeling
Results IV

Helene Seyr

Langevin process for weather modeling
Results V

Helene Seyr

Langevin process for weather modeling
Results VI

Helene Seyr

Langevin process for weather modeling
Conclusions

- Langevin process is a good alternative
- Properties of waves represented very well (Distribution, Persistence)
- Higher sampling frequency \rightarrow better model
- 2D Langevin process for correlation (?)
Thank you for your attention

Helene Seyr
PhD Candidate
helene.seyr@ntnu.no
+47 400 86 761

NTNU
Norwegian University of Science and Technology