

Wind turbine gearbox planet bearing failure prediction using vibration data

Sofia Koukoura, James Carroll & Alasdair McDonald

Department of Electronic & Electrical Engineering University of Strathclyde, Glasgow sofia.koukoura@strath.ac.uk

EERA DeepWind'18, Trondheim, 17 - 19 January 2018

Introduction	Methodology	Case Study	Conclusion
00			
Background			

Motivation

- Wind turbines are machines that operate under harsh conditions and therefore component failures happen before the end of the expected life of the turbine.
- Catastrophic failures increase O&M costs and consequently the LCOE.
- Predictive maintenance is applied in wind turbine industry so that O&M actions are optimised accordingly.

Figure: Wind Turbine on fire.¹

Introduction	Methodology	Case Study	Conclusion
000	000	0000	00
Background			

Average Repair Time and Costs in Offshore Wind

Average repair times and costs for major replacements are given per failure category [2].

- The top three average repair times occur in the hub, blades and gearbox.
- The gearbox has the highest average cost per failure.
- From the CM perspective, a wind turbine gearbox consists of three major components: **bearings**, gears and lubricant.

Introduction	Methodology	Case Study	Conclusion
000			
Objective			

Paper Objective

Create an automated failure prediction framework for wind turbine gearbox bearing faults. This framework is based on two stages:

Vibration Analysis and Feature Extraction

Find trends at varying times prior to component failure.

Extract features based on those trends.

Classification

Use features as inputs to a pattern recognition model.

Learn the behaviour characteristics of the trends for prognosis of degradation and failure prediction.

	Methodology	Case Study	Conclusion
	• 0 0		
Vibration Analysis			

Bearing Vibration Theory

- Bearing faults introduce a shock that excites high frequency resonances.
- Bearing signatures:
 - masked by other components in the gearbox.
 - stochastic.
- Planetary stage hard to diagnose.
- Ball passing frequency (repetition frequency) depends on:
 - ▷ speed (f).
 - dimensions.

Figure: Bearing with an inner race fault and its significant dimensions.

$$\mathsf{BPFI} = f\frac{n}{2}\left(1 + \frac{d}{p}\cos(\theta)\right)$$

	Methodology	Case Study	Conclusion
	000		
Vibration Analysis			

Vibration Signal Pre-processing

- Deterministics (gear) and random (bearing) components need to be separated. This can be done using an adaptive filter.
- Envelope analysis -often used in bearing diagnostics- demodulates the signal in a high frequency band.
- In order to choose the right band, spectral kurtosis indicates how kurtosis is distributed in the frequency domain and shows the impulsiveness of the signal. Thus it can be used as a filter [3].

	Methodology	Case Study	Conclusion
	000		
Classification			

Classification: k Nearest Neighbours

University of Strathclyde Engineering

kNN

- kNN classifier classifies unlabelled observations by assigning them to the class of the most similar labelled examples [1].
- Non parametric and instance based.
- k tuning using cross validation.
- Features used as input in a bearing fault case could be energy around ball passing frequency and its harmonics.

Figure: Example of kNN classification.

	Methodology	Case Study	Conclusion
		0000	
Case study on a real wind turbine			

Wind Turbine Considered in This Study

Figure: Faulty bearing.

Figure: Gearbox internal structure.

- Wind turbine rated between 2.5-3.5MW.
- Double planetary stage gearbox, commonly found offshore.
- Inner race spalling.
- 95 samples collected at various times prior to failure (2.5 years to 1 week before).
- $\bullet\,$ Acceleration data collected on a sampling rate between 20-30kHz for 10-15s. 2

²Ranges are given for confidentiality reasons

Introduction	Methodology	Case Study	Conclusion
000	000	○●○○	00
Results			

Raw Vibration Data Analysis Results

RMS of the data as a function of load at different times before the component failure.

Figure: RMS of raw vibration signals.

Introduction	Methodology	Case Study	Conclusion
000	000	○0●0	
Results			

Signal Processed Vibration Data Analysis Results

Envelope spectra of vibration signal for similar loading conditions. Only 3s of each signal are used and where they are assumed to be stationary.

Figure: Envelope Spectra (based on spectral kurtosis) at different times prior to failure.

Introduction	Methodology	Case Study	Conclusion
000	000	○○○●	00
Results			

Classification Results

		1-2 months	5-6 months	healthy
	1-2 months	75%	18%	7%
Actual Class	5-6 months	21%	69%	9%
	healthy	6%	12%	79%

Table: 3 Class Classification Results

Predicted Class

Predicted Class

		5-6 months	healthy
Actual Class	5-6 months	89%	11%
Actual Class	healthy	17%	83%

Table: 2 Class Classification Results

- Classes are assigned based on the acquisition time of the signal with respect to failure.
- 5-fold cross validation used

		Conclusion
000 000	0000	•0

Conclusion and Future Work

Conclusion

Low speed stage bearing faults may not be diagnosed through raw vibration data.

Signal processing can help enhance the bearing fault impulses.

Given sufficient samples, features can be extracted from vibration data and given as inputs to machine learning classification models.

Classification models are able to classify signals based on their health state, useful for diagnosis and prognosis.

	Methodology	Case Study	Conclusion
000	000	0000	00

University of Strathclyde Engineering

Conclusion and Future Work

Future work

Other types of classification methods, e.g. neural networks could increase accuracy.

Order tracking techniques can improve the filter and the overall accuracy results.

More historic data samples will train more robust models.

References I

Christopher M Bishop.

Pattern recognition and machine learning (information science and statistics) springer-verlag new york. *Inc. Secaucus, NJ, USA*, 2006.

James Carroll, Alasdair McDonald, and David McMillan. Failure rate, repair time and unscheduled o&m cost analysis of offshore wind turbines.

Wind Energy, 2015.

Robert B Randall and Jerome Antoni.
Rolling element bearing diagnosticsa tutorial.
Mechanical systems and signal processing, 25(2):485–520, 2011.