WNDBARGE

EERA DeepWind'18

WindBarge - Floating wind production at intermediate water depths

Reduce cost: Easy to build Easy to install Maintain and decommission

TEAM

Jørgen Ranum Krokstad

Inventor, Prof II at Dep. Marin Technology. 32 yr. of experience in hydrodynamic and wind

Synne Nybø

M.S.c in offshore construction from Dep. Marin Technology. Research on fatigue and global analysis of WindBarge

Jan Tore Horr

PhD at Dep. Marin Technology. Focusing on hydrodynamics and reliability.

Fredrik S. Moer

Project Manager International rig management and shipyard experience

D NTNU Det skapende universitet

Single line mooring and weathervaning

No pretension No swivel Redundancy Position kept by using yaw controller Known principle Standard turbine

WindBarge

- Floating wind barge easy to install, maintain and decommission
- Water depths 40 100 meter
- Large marked within existing farms
- Possible to compete with fixed monopile foundations: more environmental friendly and lower cost
- Low draft built in standard harbors or docks
- Increased production

Steel mass ratios compared with competitors

Reference monopile

- Turbine Vestas 164 8 MW
- Mass/MW ratio monopile = 244

WindBarge 8 MW

- Turbine Vestas 164 8 MW
- Mass/MW ratio WindBarge = 238

WindBarge – Sheltered access

- Sheltered access in the stern of the floater for maintenance vessels (example ESNA – daughter ship (SES))
- Increased weather window
- Target 2.5m Hs

Suction anchor – not new to the wind industry

- High vertical load capacity
- Safety factor of 2 -> 6 MN vertical load
- Anchor mass in order of 100 tonn
- Towing installation method

Main dimensions – 5 MW version (could be scaled to 8 MW – estimated 1700 ton steel)

Single Mooring Line (SML – system)

3.5

Distance to anchor [m]

Accept criteria	Comments	Status
Intact stability	DNV OS-J103. Different in roll/pitch due to weather vaning.	ОК
Restoring moment	Max mean pitch angle < 5 deg	ОК
Nacelle acceleration	RMSE < 0.2g , MPMV < 0.6g	ОК
High pitch-period	Maximized during optimization	ОК
Yaw stability	Avoid fishtailing and maintain heading passively/actively	In progress
Mooring system	Single mooring line with buoys and electrical cable + suction anchor for unobstructed rotation	Initial design
Turbine support	5-8MW	ОК
Maintenance access	Sheltered docking < 2.5m Hs	Not verified
Structural capacity	Wave- and wind bending moments within the capacity of a simple barge design	In progress
ULS simulations	Verify barge behavior in extreme conditions	In progress
FLS simulations	Long-term FLS analyses with SCFs – find damage equivalent loads	Not started

Intact stability

- DNV requirements satisfied in pitch.
- In roll, it is assumed that 50% of the capacity is sufficient due to limited wind overturning moment.

Planed Projects

NTNU

Institutt for marin teknikk

- Verification from simulations/model tests
- General design improvements
- Technology qualification
- LCOE documentation

WindBarge Economical floating wind production at intermediate water depths

Fredrik.s.moen@ntnu.no jorgen.r.krokstad@ntnu.no

