

An interactive global database of potential floating wind park sites

EERA DeepWind 2018
Trondheim 2017-01-17

Lars Frøyd

lars.froyd@4subsea.com

Overview of database **Example: All global locations with:**

- 100 < Water depth < 300 (Deep draught floater)
- Mean wind speed > 9.5 m/s @ 100 m elevation
- Distance to infrastructure (population) < 200 km

Sorted by nearby population density

Metocean – typical use case

Consider the following case:

Long term motion analysis of a passive turret moored FPSO

How it works:

- FPSO orients with direction of wind, current and waves, but mostly wind and current
- Motions are largest in waves from side
- Swells common with directions offset from local wind direction

Proper analysis requires:

- Distribution of simultaneous:
 - Vessel heading,
 - Wind, current and wave directions,
 - Wind wave and swell Hs and Tp

Metocean typically provides:2D Hs - Tp scatter

- Independent wind, wave, current distributions

Metocean - A more complex case

Example - A proper analysis approach

Building the database:

Global sea wind and wave hindcast

Copernicus CMEMS:

- GLOBAL_ANALYSIS_FORECAST_WAV _001_023
- WIND_GLO_WIND_L4_NRT_OBSERVA TIONS_012_004

Global sea distance to population centra

Geonames.org:

 Coordinates and population of world cities with population > 15000

Example: Global data – Mean Wind

Mean wind speed at 10 m elevation (m/s)

Example: Global data – Mean Hs

Mean significant wave height (m) contours

Example: Global data – Mean Tp

Mean wave peak period (s)

Example: Global data - Wave energy map

 $P=rac{
ho g^2}{64\pi}H_{m0}^2T_e$

Mean wave energy contours (kW/m wave crest)

Floating wind locations: (First example revisited)

- 100 < Water depth < 300 (Deep draught floater)
- Mean wind speed > 9.5 m/s @ 100 m elevation
- Distance to infrastructure (population) < 200 km
- Sorted by nearby population density

Floating wind locations:

- 100 < Water depth < 300 (Deep draught floater)
- Mean wind speed > 9.5 m/s @ 100 m elevation
- Distance to infrastructure (population) < 200 km
- Sorted by annual mean wind speed (10 m elevation)

Floating wind locations: Some interesting areas

- 100 < Water depth < 300 (Deep draught floater)
- Mean wind speed > 9.5 m/s @ 100 m elevation
- Distance to infrastructure (population) < 200 km
- Sorted by annual mean wind speed (10 m elevation)

Example of possible data views:

- With the magic of Python (and some patience)

Simple aggregated views:

- Sorting based on mean or annual max: Hs, Tp, wind speed, water depth, etc...
- Ranking sites by some fitness function (high wind, low wave, near shore, etc)

Utilizing the full hindcast:

- Seasonal waiting times for marine operation with some operational limit (Hs, Tp, Wind speed)
- Power factor of some specific wind turbine (based on binning of wind speeds)
- Estimated site LCOE (with some clever cost model)
- Etc..

Proposed use cases:

- Resource assessment
- Feasibility studies
- Preliminary site optimization / analyses
- Operational/maintenance planning
- Etc..

Who can use it:

- All data sources are publically available
- In principle, the combined product can be made publically or comercially available:
 - E.g. complete global coverage
 - .. or on a location by loaction basis
 - Full hindcast time series
 - .. or aggregated properties (e.g. mean, max)
- Access and availablilty is not yet decided
 - (Remember, dataset more or less a bi-product of another work)
 - Please make contact if the dataset can be useful for you - we will arrange something! lars.froyd@4subsea.com

Sources — Wind/wave hindcast

- This study has been conducted using E.U. Copernicus Marine Service Information
- Copernicus CMEMS: http://marine.copernicus.eu/

Sources – Water depth:

- GEBCO 2014 water depth database:
 - https://www.bodc.ac.uk/data/hosted_data_systems/gebco_gridded_bathymetry_data/

Sources – Population density:

- Geonames.org database of world cities with population > 15000:
 - http://download.geonames.org/export/dump/cities15000.txt

