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• Power systemstability is commonly assessed by eigenvalueanalysis
• Enables analysis and mitigation of oscillatory behaviour or instability due to system

configuration,systemparameters andcontroller settings

• VSCHVDCsystems has different dynamics compared to traditional generators
• Models of MMCHVDCterminals arecurrently under development

• State-spacemodels for HVDCsystems canbeusedfor multiplepurposes
• Analysis, identification and mitigation of oscillations and small-signal instability

mechanisms inHVDCtransmission schemes
• Analysis of controller tuningand interactionbetweencontrol loops inHVDCterminals
• Integration in larger power systemmodels for assessment of howHVDCtransmission

will influenceoverall small signal stability andoscillationmodes
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Eigenvalue based small signal analysis
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Protection and Fault Handling in Offshore HVDC grids
Objectives: Establish tools and guidelines to support the design of multi-terminal 
offshore HVDC grids in order to maximize system availability. Focus will be on limiting the 
effects of failures and the risks associated to unexpected interactions between 
components. 

• Develop models of offshore grid components (cables, 
transformers, AC and DC breakers, HVDC converters) for 
electromagnetic transient studies.

• Define guidelines to reduce the risks of unexpected 
interactions between components during normal and fault 
conditions. 

• Define strategies for protection and fault handling to 
improve the availability of the grid in case of failures. 

• Demonstrate the effectiveness of these tools with numerical 
simulations (PSCAD, EMTP), real time simulations (RTDS, 
Opal-RT) and experimental setups. 

• Expand the knowledgebase on offshore grids by completion 
of two PhD degrees / PostDoc at NTNU and one in RWTH.
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Overview of models and methods for stability analysis
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Detailed Circuit Model
(including IGBT’s)

Mathematical model 
with discontinuous 
switching functions

Average model with 
continuous insertion 

indices, and time-
periodic solutions in 

steady-state 

Average model with 
continuous insertion 

indices, and time-
invariant solutions in 

steady-state

Piecewise (linear) models

Linearized SSTP 
models

Impedance 
Representation 
(seq. domain)

Linearized SSTI 
models

• Computationally intensive, 
time-consuming EMT 
simulation studies for large 
signal stability.

• Search for a Lyapunov 
function to prove large-
signal stability.

• Estimate of regions of 
attraction as a measure of 
the system large-signal 
stability robustness.

Lyapunov methods for piecewise linear models:
• Common quadratic Lyapunov function,
• Switched quadratic Lyapunov function
• Multiple Lyapunov functions

Small-signal stability assessment via 
time-periodic theory:
• Poincaré multipliers

Small-signal stability assessment via 
traditional eigenvalue-based methods
• Eigenvalue plots
• Parametric sensitivity
• Participation factor analysis

Small-signal stability assessment via by 
means of Nyquist criteria.Impedance 

Representation (dq 
domain)
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Frequency-Dependent State-Space modelling of HVDC cables
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• The modelling approach is based on a lumped circuit and constant parameters
– Parallel branches allow for capturing the frequency dependent behavior of the cable
– Compatible with a state space representation in the same way as classical models with simple 

π sections
– Model order depends on the number of parallel branches and the number of π sections
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State-space frequency-dependent π section modelling

8



SINTEF Energy Research

Behavior in a point to point HVDC transmission scheme
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Interaction modesAll modes

5 π sections
5 parallel branches

5 π sections
classical

Eigenvalue trajectory for a sweep of dc voltage controller gain
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Main conclusions related to cable modelling
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• ULM is established for EMT simulations
• Traditional π-section models of HVDC cables 

are not suitable for dynamic simulation or 
stability-assessment of HVDC systems

• Single inductive branches imply significant 
under-representation of the damping in the 
system

• Frequency-dependent (FD) π-model for 
small-signal stability analysis

• For simplified models, representation of 
cables by equivalent resistance and 
capacitance can be sufficient

• Developed Matlab-code and software tool for 
generating FD-πmodels
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• Advantages
• Modularity
• Scalability
• Redundancy
• Low losses
• DC-capacitor is not 

required
• Disadvantages

• High number of switches
• Large total capacitance
• Complexity
• Sub-module Capacitors 

will have steady-state 
voltage oscillations and 
internal currents can 
have corresponding 
frequency components
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3-phase MMC: Basic Topology
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Classification of MMC Modelling for eigenvalue analysis
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MMC Small-Signal Modelling
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Compensated vs. Uncompensated Modulation
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Compensated Modulation

Uncompensated Modulation
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Main conclusions related to MMC modelling
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• The internal energy storage dynamics of MMCs must be 
represented for obtaining accurate models

• Established models of 2-Level VSCs should not be used for 
studying fast dynamics in HVDC systems

• Models assuming ideal power balance between AC- and DC-
sides can only be used for studying phenomena at very low 
frequency

• Two cases of MMC modelling
• Compensated modulation with Energy-based modelling
• Un-compensated modulation with Voltage-based modelling

Energy-based model

Voltage-based model
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Generation of a small signal model for MT HVDC

• A modular approach was developed to generate the small signal model of MT HVDC 
transmission system

– Decompose the HVDC MT into predefined modular blocks (cable, converters)
– Modules can be customized by modifying the parameters but not the structure of the 

subsystem
– Several blocks are developed for the converters reflecting the topology and the control
– Steady state conditions (linearization points) for each block were precalculated as a function of 

the input
– Steady state conditions for the entire system were obtained by implementing a dc loadflow

17
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Definition of subsystem interfaces
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CONVERTER A

CONVERTER C

CONVERTER B

CONVERTER D

CABLE AB

CABLE BC CABLE BD

CABLE CD
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Definition of subsystem interfaces
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CONVERTER A
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ADDING
NODE

ADDING
NODE
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Workflow for generating the small signal model
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Definition of the grid 
topology

Input components 
parameters

dc Load flow

Calculation steady state 
conditions for the 

submodules 

Calculation state space 
matrices for the 

submodules

Assemble submodules 
matrices into system 

matrices
Export data

Data input
Calculation steady 

state conditions
Calculation state 
space matrices



SINTEF Energy Research



SINTEF Energy Research

Screenshot of the GUI after generating the small signal 
model
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• Modes associatedwith thecablearequitequickly damped
• One oscillatory mode and one real pole are slightly dependent on operating conditions

Systemis stableandwell-damped in thefull rangeof expectedoperatingconditions
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MMC-based point-to-point transmission scheme
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• Variables of small-signal model can accurately represent the nonlinear system model 
for variables at both terminals
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Time-domain verification of point-to-point MMC scheme
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Aggregated participation factor analysis
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• Approach proposed for identifying interactions in an interconnected system
• An interaction mode is defined as an eigenvalue having participation ρ higher than 

a threshold χ from both parts of the interconnected system
• Interaction modes identified as shown below for χ = 0.20
• Close correspondence can be identified between identified interaction modes 

and eigenvalues that are significantly influenced by the interconnection
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• More interaction modes compared to case
with 2LVSCs

• In total 14 eigenvalues - 12
oscillatory modes (6 pairs) and two
real poles.

• A first group is defined as those well
damped oscillatory modes (real part
smaller than -200).

• A second group of interaction modes is
foundmuchcloser to the imaginary axis

• Oscillatory mode (39-40)
• Tworeal eigenvalues (48and49)
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Interaction modes –MMC HVDC point-to-point scheme
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• For fast interaction modes:
• Balanced participation from the 

two converter stations 
• High participation from the cable 

in the fastest modes
• Slow interaction modes 

• Dominant participation from the 
DC-voltage controlled terminal in 
oscillatory modes

• Low participation from the cable, 
especially for the two real poles

• Depending on the eigenvalue, one 
station will have a higher participation 
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Interaction modes –Aggregated participation factor analysis

Aggregated participation factor analysis of interarea modes of
theMMC-HVDCpoint-to-point scheme
–blue:DCVoltagecontrollingstation
–green:power controllingstation
–brown:dc cable
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• The fast oscillatory modes (8-9, 10-
11, and 14-15)
• Related to dc voltages at both 

cable ends 
• Associated with cable dynamics

• Modes 21-22 and 25-26 
• "DC-side" interactions
• Almost no participation from the 

AC-sides
• Associated with the MMC 

energy-sum w∑ and the 
circulating current ic,z. 

29

Participation Factor Analysis of Interaction Modes
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• Oscillatory modegivenby eigenvalues 39-40
• Interaction modes associated with the

power flowcontrol in thesystem
• Associated with the integrator state of

theDCvoltagecontroller,ρ
• Real poles 48 and 49

• Associated with integrator states of the
PI controllers for the circulating current,
ξz,

• The interaction of both stations in these
eigenvalues is mainly due to the power
transfer through the circulating current.

• Small participation of the cable since the
dynamics are slow and the equivalent
parameters of the arm inductors
dominate over the equivalent DC
parameters of the cable
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Participation Factor Analysis of Interaction Modes
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Main conclusions related to interaction analysis
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• Small-signal eigenvalue analysis can be utilized 
to reveal the properties of modes and 
interactions in the system

• Participation and sensitivity of all oscillations 
and small-signal stability problems can be 
analyzed

• Suitable for system design, controller tuning and 
screening studies based on open models

• Aggregated participation factor analysis can 
reveal interaction between different elements or 
sub-systems
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Technology for a better society
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