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Hgenvalue based small signal analysis

*  Power systemstability is commonly assessed by eigenvalue analysis

» Enables analysis and mitigation of oscillatory behaviour or instability due to system
configuration, system parameters and controller settings

* VSCHVDCsystems has different dynamics compared to traditional generators
* Models of MMCHVDCterminals are currently under development

«  State-space models for HVDCsystems can be used for multiple purposes

* Analysis, identification and mitigation of oscillations and small-signal instability
mechanisms in HYDCtransmission schemes

* Analysis of controller tuning and interaction between control loops in HYDCterminals

* Integration in larger power system models for assessment of how HVDCtransmission
will influence overall small signal stability and oscillation modes
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Protection and Fault Handling in Offshore HVDCgrids

" bjectives: Establish tools and guidelines to support the design of multi-terminal
offshore HVDCgrids in order to maximize system availability. Focus will be on limiting the
effects of failures and the risks associated to unexpected interactions between

- components.

« Develop models of offshore grid components (cables,
transformers, ACand DChbreakers, HVDCconverters) for
electromagnetic transient studies.

 Define guidelines to reduce the risks of unexpected
interactions between components during normal and fault
conditions.

 Define strategies for protection and fault handling to
improve the availability of the grid in case of failures.

« Demonstrate the effectiveness of these tools with numerical
simulations (PSCAD, EMTP), real time simulations (RTDS,
Qpal-RT) and experimental setups.

» Expand the knowledge base on offshore grids by completion
of two PhD degrees / PostDoc at NTNU and one in RATH.
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Overview of models and methods for stability analysi

. Computationally intensive,
time-consuming EMT
simulation studies for large

signal stability. ) o
Lyapunov methods for piecewise linear models:

Uz iz o ° Common quadratic Lyapunov function

with discontinuous Piecewise (linear) models . q ; yap !

e . Switched quadratic Lyapunov function
4>

. Multiple Lyapunov functions

Small-signal stability assessment via
time-periodic theory:

Average model with . Poincaré multipliers

continuous insertion
indices, and time-

periodic solutionsin I
. Search for a Lyapunov steady-state
function to prove large- I
signal stability.
. Esgtimate of rggions of I Smalll-signal stability assessment via by
attraction as a measure of I means of Nyquist criteria.
the system large-signal I
stability robustness. Average model with
continuous insertion I

indices, and time-
invariant solutions in Sma ll-signal stability assessment via
steady-state traditional eigenvalue-based methods
. Eigenvalue plots
U Parametric sensitivity
° Participation factor analysis
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Hequency-Dependent State-Space modelling of HVDCcables

* The modelling approach is based on alumped circuit and constant parameters

Parallel branches allowfor capturing the frequency dependent behavior of the cable
Gompatible with a state space representation in the same way as classical models with simple

T Sections
Model order depends on the number of parallel branches and the number of T sections

MODELS
| lumped parameters l [distrihuted pa rameters]

h 4
| l freq. d dent
constant parame ters
J' |
v v
P o ; ' constant parameter variable parameter - "
[ Pl circuit ] [ Pl circuits in series ] [ Bergeron's maodel ] [ e ] [ R universal line model
| others I
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State-space frequency-dependent t section modelling
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Behavior in a point to point HYDCtransmission scheme
Eigenvalue trajectory for a sweep of dc voltage controller gain
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Main conclusions related to cable modelling

 ULMis established for BEMT simulations

« Traditional m-section models of HVDCcables
are not suitable for dynamic simulation or
stability-assessment of HYDCsystems

* Single inductive branches imply significant

under-representation of the damping in the
system

Synthesis for specified mand n

* Frequency-dependent (FD) t-model for S — R
small-signal stability analysis Hisess e = ST ETETETETETET
- For simplified models, representation of =
cables by equivalent resistance and
capacitance can be sufficient
e Developed Mhtlab-code and software tool for
generating FD-t models
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3-phase MMC Basic Topology
* Advantages
*  Modularity e A Leg
«  Scalability N iy Submode
g| SM | SM g| SM
 Redundancy ' R RN R
» Lowlosses TR SME eSM] [ e[SV
. DGcapacitor is not vl sl | Salsu
| required . \»Iu L, : IUEE(&W IUEJ?VL LV L Ao
- Disadvantages =>_,{_m v/ i R AN A %
«  High number of switches PP o e P w==__i:m
» Largetotal capacitance o v T sm ;B
«  QGomplexity R R R )
- Sub-module Capacitors V.. [BSM [BSM >
will have steady-state | o] SM | SM a| SM
voltage oscillations and LI [ —

internal currents can
have corresponding —> Mhin challenge for small-signal modelling

frequency components
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(assification of MMCModelling for eigenvalue analysis

Two-Level VSC
Equivalent

NO vvc - YES

storage
?
Zhejiang
Strathclyde University
approach approach
(Adam et af) (Liu et &)

MMC Small-Sgnal Modelling
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Power Balance

NO drculating YES

Qurrent?
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Modulation?
Duisburg Phaspr _ \Wbltage
Es Modelling: _
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GCompensated vs. Uncompensated Modulation

Compensated Modulation
I \bltage
_ vk ck
erion %0 reference U ~U MVCoutput voltage
ndexes R signals are T component will be
= % divided by the €y ~ By approximately equal
: actualarm to the reference
voltage : .
: Appropriate for energy-based modelling
Uncompensated Modulation
~ €y + Uy \bltage
nsertion Vae references are [uck]: g R T I SRR Ty [U;]
ndexes n zm divided by a Cul N _(\/WEk + Wy _\/WZk _WAk) (\/Wzk T Wy +\/W2k _WAk) Su
OV, constant value

Non-linear relationship
between reference and
'feal"driving voltages

The control output is modified by the
energy information in each arm/phase

Energy-based modelling is not suitable for this case
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Main conclusions related to MMCmodelling
Energy-based model

« Theinternal energy storage dynamics of MMCs must be

represented for obtaining accurate models Example of results - zero sequence variables

» Established models of 2-Level VSGs should not be used for s
studying fast dynamics in HVDCsystems

* Models assuming ideal power balance between AG and DG

sides can only be used for studying phenomena at very low

[ .} ProOfGrids |

wiels are valid for any translent
d for small perturbations around linearization point

frequency
- Two cases of MMCmodelling \oltage-based model
*  (ompensated modulation with Energy-based modelling e
* Un-compensated modulation with Voltage-based modelling : ' s o] :
) 0.05 1 1 .2 '['|[|]1-53[.~‘] 0.3 0.35 04 1
- ' L n{f\vvw v, — AAM — EMT
x 0.94 /\/___‘k \U[
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(eneration of a small signal model for MT HVDC

e Amodular approach was developed to generate the small signal model of MT HVDC
transmission system
— Decompose the HYDCMT into predefined modular blocks (cable, converters)

— Modules can be customized by modifying the parameters but not the structure of the
subsystem

— Several blocks are developed for the converters reflecting the topology and the control

— Steady state conditions (linearization points) for each block were precalculated as a function of
the input

— Steady state conditions for the entire systemwere obtained by implementing a dc loadflow
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Definition of subsystem interfaces

| CABLE AB |
'|—< H“:'i"”‘ -"”II:IAM::)—'I
T — — T

CONVERTER A

CONVERTER B

CABLE BD

CABLE BC

II|—@7%|:|I’W‘"- CABLE CD =

L - CONVERTER D

CONVERTER C
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Definition of subsystem interfaces

CABLE AB ADDING

=O~=y, Ly

7
|

CONVERTER A CONVERTER B

CABLE BC

CABLE BD

'IW NODE \

CONVERTER C \ i’aﬁﬁﬁ '
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Workflowfor generating the small signal model

T ; Calculation state space
Definition of the grid dc Load flow atrices for the
topology /’ /’ submodules
Calculation steady state Assemble submodules
Input components |/ conditions for the / matrices into system > Export data
parameters submodules matrices
_ Calculation steady Calculation state
Data input state conditions space matrices

SINTEF SINTEF Energy Research 20
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B HVDC Small Signal Modelling GUI - - X

cad

Add node and converter Add cable Load component data Assign reference pu Generate small signal model Clear all cad
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Screenshot of the GUl after generating the small signal
model
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MMC-based point-to-point transmission scheme

combination
4000
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O
3000 ©
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Eigenvalues of MMCHVDCpoint-to-point Trajectory of critical eigenvalue with power
scheme reference is varied from-10to 1.0 pu

* Modes associated with the cable are quite quickly damped

* (One oscillatory mode and one real pole are slightly dependent on operating conditions
Systemis stable and well-damped in the full range of expected operating conditions
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Time-domain verification of point-to-point MMCscheme

« Variables of small-signal model can accurately represent the nonlinear system model

for variables at both terminals
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Aggregated participation factor analysis

*  Approach proposed for identifying interactions in an interconnected system Hpa i H
«  Aninteraction mode is defined as an eigenvalue having participation p higherthan i = ”p ”
a threshold y from both parts of the interconnected system ‘

* Interaction modes identified as shown belowfor y =0.20
«  COlose correspondence can be identified between identified interaction modes ~ #ei = 277 _
7

and eigenvalues that are significantly influenced by the interconnection yes
o 10* Eigenvalues - 3T system X 10* Eigenvalues - Interaction modes .
: I
° o
0.6 0.6 2
® ® 2

0.4 e 0.4 Z _

: P N
g o co ppam T o 68 o Popomy | | I
£ ° = S

Sy [0 1| ERERRY

;e o {11 RN

-0.6] -0.6 . §0.27

°
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Interaction modes — MMCHVDCpoint-to-point scheme

*  More interaction modes compared to case
with 2L VSGs

eigenvalues of interarea modes

* In total 14 eigenvalues - 12 400
oscillatory modes (6 pairs) and two ., f8 4
real poles.
2000 *1 y)

- A first group is defined as those well *** *4#25 s AN
damped oscillatory modes (real part 0 Lo
smaller than -200). o \

-1000 *2 5 %:_,

- A second group of interaction modes is E e /,«/\

found much closer totheimaginary axis 30007 e yaa
* Oscillatory mode (39-40) '400.9102 e P ? Sy
* Tworeal eigenvalues (48 and 49) // 1T
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Interaction modes — Aggregated participation factor analysis

14 T 1T 1

e For fast interaction modes:

 Balanced participation fromthe
two converter stations

« High participation fromthe cable
inthe fastest modes

 Yowinteraction modes

« Dominant participation fromthe
[DVOItage controlled terminal in 891011 1415
oscillatory modes

2122 2526 3940

Aggregated participation factor analysis of interarea modes of

» Lowparticipation fromthe cable, the MMGHVDCpoint-to-point scheme
especially for thetwo real poles —blue: DC\oltage controlling station
: : —green: power controlling station
Depending on the eigenvalue, one _brown:dc cable

station will have a higher participation
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Participation Factor Analysis of Interaction Modes

* Thefast oscillatory modes (8-9, 10- ¢
11,and 14-15) °’

01
o
() wd g iid ila  gamd gamq iod  ioqg  phd  phig  wlld  wlg  epspll dhetapl wic et o pacm  icz  wSigmaKappaSigma Xz
‘mode 14, with eigenvalue at -282.05785+2005.41321
0.25
cable ends ”

« Associated with cable dynamics

r-
—
=

*  Modes 21-22 and 25-26 ’
* "DGCside"interactions o- 14-

- Almost no participation fromthe ..
AGsides e e e

* Associated with the MMC : .
energy-sum vk and the . 21-22
circulating current /.

(6)]

wd g ild ili  gamd gamq iod g  phd  phig vl  wlg  epspll dhetapll wic et o pacm  icz  wSigmaKappaSigma Xz
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Participation Factor Analysis of Interaction Modes

e  (scillatory mode given by eigenvalues 39-40
* Interaction modes associated with the - -
power flow control in the system b
* Associated with the integrator state of 'ttt i i M M1
the DCvoltage controller, p .
+  Real poles 48 and 49 394
* Associated with integrator states of the
Pl controllers for the circulating current, L w8 o | wmmm | | B —
« The interaction of both stations in these =~ -

eigenvalues is mainly due to the power
transfer through the circulating current.

» Small participation of the cable sincethe =~ " = """ " " " " e T
dynamics are slow and the equivalent .
parameters of the arm inductors
dominate over the equivalent DC
parameters of the cable . -

:[>
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Main conclusions related to interaction analysis

Small-signal eigenvalue analysis can be utilized
toreveal the properties of modes and
interactions in the system

 Participation and sensitivity of all oscillations
and small-signal stability problems can be
analyzed

« Suitable for system design, controller tuning and
screening studies based on open models

Aggregated participation factor analysis can
reveal interaction between different elements or
sub-systems

SINTEF
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Interaction modes - 2L VSC HVDC point-to-point sheme
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participation factor analysis
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Representation of system interconnection in A-matrix

+  Interface at point of connection EC—
Vaoltage of equivalent do-hus capacitance (S1) 4 '- FIIS:J
+  Currentsin last pi-section of cable model (S2) :,
) a0f - gt
+  Elements g and ITare 0 Fewn o
« [andBare []i_\-'s:nf:q = a ='-.L
@ ) ) “ " I
r [ 2o ] t KT
Cou Cud  © & e
12 g__ o b b | 0 P
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