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Background & Motivation

Upper tank

It consists of an upper concrete
floating body connected by tendons
to a heavy lower ballast tank.

It is compartmented to meet
standardized stability requirements
and allow water ballast transfer.

Telescopic tower

The telescopic tower system consists of
tubular tower levels built of precast concrete
elements, one steel section and a tower self-
lift using heavy-lift strand jacks. This system is
already developed for onshore and offshare
fixed foundation application and is currently
| being developed from TRL3 to TRL7 in a

/" separate project.

/' The application with a floating system gives
added advantages for deep-water application
and transportation: A lower wind turbine
height for installation and transportation
allows for a stable system.

Suspension tendons \
The steel tendon configuration it is

key to guarantee the solidary motions \
of the upper tank and lower tank.

Lower tank
The suspended ballast lowers the system”s centre of gravity
to stabilize the structure. The concrete structure is stable
during transport partially filled with solid ballast. For
installation purposes the lower tank is water ballasted until it
gets the final location.

[esteyco]
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EU Horizon 2020 project: TELWIND

Cost reduction for floating offshore turbine

Evolved spar concept

Telescopic tower

Local and low cost material usage: Concrete

Simpler manufacturing and installation processes

»How great is the impact of controller on FOWTs?
»What makes controlling FOWTs difficult ?

» How well do the state-of-art control methods work?



What makes controlling FOWTs difficult ?
Physical: Negative aerodynamic damping

Bl

Ll

Maero(V,Q,0)

Proportional gain: Kp
Integral gain: Kp/Ti

| drive

Applying conventional on-shore controller to

FOWT leads to the instability problem

Larsen, T. J., and Hanson, T. D., 2007. “A method to avoid
negative damped low frequent tower vibrations for a floating,
pitch controlled wind turbine”. Journal of Physics: Conference

Series, 75(1), p. 012073.
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What makes controlling FOWTs difficult ?
Control theory: Right-half-plane-zero (RHPZ)

Blade-pitch 6

N Transfer Function [BSERERAEY Qb Baseline
Wind turbine G(s)

> ntroller
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How good do the state-of-art controllers work?
Selection of theoretical methods

Different control methods used for FOWT by
modifing Baseline controller:

a

= Single-input-single-output (SISO):
Detuning / scheduled detuning

+ .
Ptfm damper - feedback of Ptfm-Pitch to C Baseline
Blade-Pitch controller

= Multi-input-single-output (MIMO):
Compensator - feedback of Ptfm-Pitch
to Generator torque 0

\ Y4
A

Wind turbine

Evaluation tool:

» Linear analysis: simplified linear mdoel with 5
DOF (SLOW) T

= Coupled aero-hydro-servo-elastic nonlinear Compensator
model (Bladed v4.7)
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SISO: Detuning
Simple approach

— e

Maero(V,Q,8)

1DOF Drivetrain: second order differential system

. oM , oM Kp
Liripe® + <_ aagem)KP @+ <_ aagero) ?i(p =0

Eigen-frequency of the drivetrain motion should be

lower than the Ptfm eigen-frequency

Detuning method could lead to negative gains
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SISO: Detuning Baseline

Scheduling at different wind speeds 6 Q0

Wind turbine
Closed-loop with different gains at 16m/s

P
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SISO: Detuning Baseline

Trade-off between system stability and control performance 6 Q
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MISO: Feedback of Ptfm-Pitch to Blade-pitch

i Baseli
How does it work? ﬂ
7} Q
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MISO: Feedback of Ptfm-Pitch to Blade-pitch
Problem with wave

PtfmPitch velocity without wave [rad/s]
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_‘ Baseline
MIMO: Feedback of Ptfm Pitch to Gen Torque 0 0
How does it work?
S sator
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A

How great is the impact of controller on FOWTs?
wind: [12, 16, 20, 24] m/s, IEC3-A class Wave: Hs 5.7 [m], Tp 11.5 [s] foﬁi')'{l‘; :

0 Q
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Conclusion

o System motions and loads are strongly influenced by the controller. These
can be significantly reduced by a well designed controller.

e Additional loops can improve the control performance. However, all of the
state-of-art approaches have drawbacks.

* Improvement of control performance in wave frequency region is difficult
with current sensor and actuators.
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