

Impact of the aerodynamic model on the modelling of the behaviour of a Floating Vertical Axis Wind Turbine

Vincent LEROY^{1, 2} PhD Student

J.-C. GILLOTEAUX¹, A. COMBOURIEU², A. BABARIT¹, P. FERRANT¹

¹LHEEA – Centrale Nantes – 1, rue de la Noë – 44321 Nantes - FRANCE ²INNOSEA – 1 rue de la Noë – 44321 Nantes - FRANCE

Unsteady aerodynamics of a VAWT at sea

Aerodynamic modelling of VAWTs

Amongst other theories...

Inviscid models can usually account for viscous effects with semi empirical models _

	Assumptions	Pros	Cons	
DMS [1] Double Multiple Streamtube	Steady Inviscid flow Actuator disks	Fast State-of-the-art	Steady Problems at high TSRs	po Po U _x Streamtube boundary 2 3 4
AC [2] Actuator Cylinder	Steady, 2D, Inviscid, Incompressible flow	Fast Accurate cylindrical swept surface Viscous models added	Steady flow Difficult to go 3D	Que de la construction de la co
FVW [3] Free Vortex Wake + lifting line theory	Potential flow Lifting line	Unsteady aerodynamics Inherent rotor/wake and wake/wake interactions	High CPU cost	r_4 r_2 r_1 r_1 r_2 r_2 r_1 r_2 r_2 r_1 r_2 r_2 r_2 r_1 r_2 r_2 r_2 r_1 r_2 r_2 r_1 r_2
CFD Actuator line + RANS LES,	<i>Var</i> Which mode	l can we use for a FVAWT ?	Very high CPU ost	
[1] (Paraschivoiu, 2002) [2] (Madsen, 1982) [3] (Murray et al., 2011) EERA DeepWind'2018 - Wednesday, the 17th of January 2018 - V. Leroy Image: Construction of				

NANTES

4

Studied Floating HAWT and VAWTs

- NREL 5MW HAWT on the OC3Hywind SPAR (Jonkman, 2010)
- 2 and 3 bladed H-VAWTs of equal solidity, on the OC3Hywind SPAR
 - Designed by (Cheng, 2016)
- Same mooring system, with an **added linear spring acting in Yaw** (Jonkman, 2010)
- <u>Rigid</u> bodies (SPAR, tower and blades)
- Studied:
 - Motion RAOs with "white noise" waves and constant wind (DMS vs. FVW)
 - OC3 load cases in time domain for the VAWTs with DMS vs. FVW solvers
 - H2 presented today

OC3 load cases on the H2 + OC3Hywind SPAR

- Environmental conditions
 - $T_p = 10s, H_s = 6m$
 - Kaimal spectrum wind (x, y, t)
 - $U_{\infty} = 12m.s^{-1} \rightarrow TSR \approx 3.5$
 - $U_{\infty} = 18m.s^{-1} \rightarrow TSR \approx 2$
- Simulations run on 5000s
 - Transient regime removed for analysis
- Relevant output data
 - Platform motions 6 DOFs
 - Aerodynamic loads and power on the rotor (F_x, F_y, P)
 - Aerodynamic loads on an equatorial blade element F_N , F_T

Power Spectral Densities: platform motions

Power Spectral Densities: platform motions

Power Spectral Densities: conclusions

- Similar motion PSDs in response to the two models: DMS and FVW
 - Surge, Heave, Pitch
 - Yaw (at natural frequency)
 - At waves and low frequencies
- Higher damping on the transversal motions with FVW
 - Differences in sway and roll at natural frequencies
- Important differences at high TSRs for the torque PSDs
 - At the 2p frequency
 - Similar behaviour at low frequencies

INNOSEA

Loads on a blade element

Tangential load on equatorial blade element on a revolution

- 25% relative difference on mean load at $12m.s^{-1}$
- 37% relative difference on std at $12m. s^{-1}$
- Impact if considering flexible blades ?

Conclusions

- On this case, with the OC3Hywind SPAR platform:
- Impact of the aerodynamic model on the H2 (OC3 load case): DMS vs. FVW
 - No substantial effect on PSDs (except transversal motions)
 - Same conclusion on the motion RAOs with wind
- Difficult to process mooring line tensions with this mooring model
 - Added linear stiffness in yaw, designed for a HAWT
 - A more detailed model could be important
- When focusing on mean and std:
 - At low TSR: models behave similarly
 - At high TSR: important differences on mean and std for
 - Aerodynamic loads
 - Motions
 - → DMS seems to miss important aerodynamic unsteady effects due to strong rotor/wake interactions at high TSR
 - → It could have a strong impact when looking at blade design (with flexible blades), for instance
- Similar conclusions are obtained with the H3 VAWT on the same load cases (not presented here...)
 - Comparative study to come

References

Paulsen et al., "DeepWind-from idea to 5 MW concept", Energy Procedia, 2014

I. Paraschivoiu, "Wind Turbine Design: With Emphasis on Darrieus Concept", Presses Internationales Polytechniques, 2002

H. A. Madsen, "The actuator cylinder - A flow model for vertical axis wind turbines", *Aalborg University Centre, Denmark*, **1982**.

Murray et al., "The Development of CACTUS, a Wind and Marine Turbine Performance Simulation Code", *Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA2011, 4 - 7 January 2011, Orlando, Florida,* **2011**

A. Babarit and G. Delhommeau, "Theoretical and numerical aspects of the open source BEM solver NEMOH", In *Proceedings of the 11th European Wave and Tidal Energy Conference 6-11th Sept 2015, Nantes, France,* **2015**

K. Merz and H. G. Svendsen, "A control algorithm for the DeepWind floating vertical-axis wind turbine", *Journal of Renewable and Sustainable Energy 5*, **2013**

Z. Cheng, Integrated Dynamic Analysis of Floating Vertical Axis Wind Turbines, Norwegian University of Science and Technology (NTNU), 2016

J. Jonkman et al., "Definition of the Floating System for Phase IV of OC3. Technical Report NREL/TP-500-47535", National Renewable Energy Laboratory, 2010

G. K. V. Ramachandran et al., "Investigation of Response Amplitude Operators for Floating Wind Turbines", In Proceedings of 23rd International Ocean, Offshore and Polar Engineering Conference – ISOPE 2013, Anchorage, Alaska, 2013

K. Wang, "Modelling and dynamic analysis of a semi-submersible floating Vertical Axis Wind Turbine", Norwegian University of Science and Technology (NTNU), 2015

Contact: vincent.leroy@ec-nantes.fr

Coupled simulation tool: seakeeping

InWave is developed at INNOSEA in collaboration with LHEEA Lab. of Centrale Nantes

• Key features:

- Hydrodynamics: linear potential flow solver Nemoh (developed at Centrale Nantes)
- Mechanics: multi-body solver
- Quasi-steady mooring model (MAP++)
- Accounts for Power Take Off (generator) and control laws (blade pitch and/or generator)
- Solves the equations of motion in time domain using RK4 or Adams-Moulton scheme
- Considers regular or irregular waves

Coupled simulation tool: FVW solver

- CACTUS
 - Code for Axial and Cross-flow TUrbine Simulation
 - Developed at Sandia National Laboratories (BSD License)
- Free Vortex Wake theory lifting line theory
 - Potential flow, unsteady
 - Fither HAWT or VAWT
 - Works with known profiles (C_d, C_l, C_m)
 - Inherently accounts for tip vortices, rotor/wake interactions, skewed inflow

Sandia

National

SNL 34 m VAWT

⁽Murray et al., 2011)

INNOSEA

- Unsteady aerodynamic loads, including the tower shadow
- Including dynamic stall models:
 - **Boeing-Vertol**
 - Leishman-Beddoes
- Pitch rate and added mass effects
- Validated on fixed horizontal and vertical rotors
- Added:
 - Parallel computing, turbulent inflow, visualizations, platform motions

Coupled simulation tool: DMS solver

- Assumes steady and potential flow
- Large number of double streamtubes
- With actuator disks upwind and downwind

Added:

- Leishman-Beddoes dynamic stall model
- Skew model as presented in Wang (2015)
- Validated on a fixed turbine (SANDIA 17m) (Akins, 1986)
- And in a skewed flow (Mertens, 2003)

Control algorithm (Merz, 2013)

Adapted by (Cheng, 2016)

EERA DeepWind'2018 - Wednesday, the 17th of January 2018 - V. Leroy

INNOSEA

« Code-to-code » comparison

First study on a floating HAWT with InWave + CACTUS

- OC3Hywind + NREL5MW (OC3)
- J. Jonkman et al., "Definition of the Floating System for Phase IV of OC3. Technical Report NREL/TP-500-47535", National Renewable Energy Laboratory, National Renewable Energy Laboratory, 2010

- Presented at OMAE2017 @Trondheim, Norway
 - V. Leroy, J.-C. Gilloteaux, M. Philippe, A. Babarit & P. Ferrant, "Development of a simulation tool coupling hydrodynamics and unsteady aerodynamics to study Floating Wind Turbines", Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2017, June 25-30, 2017, Trondheim, Norway, 2017

Studied Floating HAWT and VAWTs

- NREL 5MW HAWT on the OC3Hywind SPAR (Jonkman, 2010)
- 2 and 3 bladed H-VAWTs of equal solidity, on the OC3Hywind SPAR
 - Designed by (Cheng, 2016)
- Same mooring system, with an **added linear spring acting in Yaw** (Jonkman, 2010)
- <u>Rigid</u> bodies (SPAR, tower and blades)
- Studied:
 - Motions RAOs from "white noise" waves and wind (DMS vs. FVW)
 - OC3 load cases in time domain for the VAWTs with DMS vs. FVW solvers
 - H2 presented today

Motion RAOs from time domain

- Conditions:
 - White noise waves
 - Constant wind: $U_{\infty} = 0, 8, 12, 18 \text{ m. s}^{-1}$ (Only BEM (FAST) for HAWT or DMS for VAWTs)
- Post-processing:
 - PSD computation as in (Ramachandran et al., 2013)

Impact of aero model and RAOs

Comparison of these RAOs for VAWTs: DMS vs. FVW

