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Unsteady aerodynamics of a VAWT at sea

Unsteady inflow
' Blade pitch control (7)

9 M s

tower diverts the

Blade lift, stall, ... i
D Q flow and create ¥ortices
Boundary layer O (O

Wake vortices induce unsteady velocities in the blade inflow
and interact together

The overall motion of the floating device
involves unsteady phenomena

L.

DeepWind VAWT (Paulsen et al., 2014)
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Aerodynamic modelling of VAWTs

=  Amongst other theories...
— Inviscid models can usually account for viscous effects with semi empirical models

Assumptions Pros Cons
DMS [1] Steady Fast Steady L
Double Multiple Inviscid flow Problemsat =
) State-of-the-art ) !
Streamtube Actuator disks high TSRs
Fast —
AC[2] Stegdy, 2D, Accurate cylindrical swept St.ez.ady s "
: Inviscid, Difficulttogo —-
Actuator Cylinder Incompressible flow surface 3D
P Viscous models added
FVW [3] Unsteady aerodynamics

Free VVortex Wake
+ lifting line theory

Potential flow
Lifting line

Inherent rotor/wake and
wake/wake interactions

CFD
Actuator line + RANS
LES, ...

[1] (Paraschivoiu, 2002)
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Va

[2] (Madsen, 1982) (3] (Murray et al., 2011t

Which model can we use for a FVAWT ?
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InWave' b
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Including NEMOH
(Babarit et al., 2015)

Modular coupling

7
%////”
////

Wind

constant/turbulent

Rotor
geometry

!

Moorings
MAP++

Hydrodynamics and

Positions/velocities of

blade elements

Aerodynamic solver

multi-body solver

orces and moments on

i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY

Control

1

the rotor

Fvw/ DMS\

\

A control module dedicated to floating VAWTs
(Merz et al., 2013) and adapted as (Cheng,

Or other DLL

2016) for our study, filtering n * p frequencies.

CACTUS (SNL)
(Murray et al., 2011)

Sandia
%, National
Laboratories
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In house DMS soIver

actuator disk

Streamtube
boundary

i 2 3 3

Skew correction (Wang, 2015)
Dynamic stall
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Studied Floating HAWT and VAWTs

=  NREL5MW HAWT on the OC3Hywind SPAR (Jonkman, 2010)

= 2 and 3 bladed H-VAWTs of equal solidity, on the OC3Hywind SPAR
— Designed by (Cheng, 2016)

= Same mooring system, with an added linear spring acting in Yaw (Jonkman, 2010)
= Rigid bodies (SPAR, tower and blades)

= Studied:
— Motion RAOs with “white noise” waves and constant wind (DMS vs. FVYW)

— OC3 load cases in time domain for the VAWTs with DMS vs. FVW solvers
* H2 presented today

Line 2

Waves )
Line 1

Line 3
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= Environmental conditions
— T, =10s, H; = 6m
— Kaimal spectrum wind (x, y, t)
e Uy,=12m.s 1 > TSR = 3.5
e U,=18m.s 1 > TSR = 2

= Simulations run on 5000s
— Transient regime removed for analysis

= Relevant output data
— Platform motions 6 DOFs
— Aerodynamic loads and power on the rotor (F, E,, P)

— Aerodynamic loads on an equatorial blade element Fy, Fr

LHEEA
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Power Spectral Densities: platform motions

H2 Platform surge PSD at U=12.0m.s~! H2 Platform surge PSD at U=18.0m.s!
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Power Spectral Densities: platform motions

PSD (m?2.s.rad 1)

PSD (deg®. s.rad~1)

H2 Platform sway PSD at U=12.0m.s !
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Power Spectral Densities: aerodynamic loads

H2 Aerodynamic thrust PSD at U= 18.0m. s*
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Power Spectral Densities: conclusions

= Similar motion PSDs in response to the two models: DMS and FVW
— Surge, Heave, Pitch
— Yaw (at natural frequency)
— At waves and low frequencies

= Higher damping on the transversal motions with FVW
— Differences in sway and roll at natural frequencies

" |mportant differences at high TSRs for the torque PSDs
— At the 2p frequency
— Similar behaviour at low frequencies
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Dimensionless translations

Dimensionless platform angle
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Mean and std: platform motions

18.0m. s !

H2 Platform translations at U=
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Diff. in heave comes
from pitch coupling
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N DMS

-100f

—300

EERA DeepWind'2018 - Wednesday, the 17th of January 2018 - V. Leroy

Roll Pitch

Yaw

Dimensionless platform angle

200

150F

H2 Platform rotations at U=

18.0m.s !

Relative differences:

DMS vs. FVW
Um.s™') 12 18
Mean(X) 12% 6%
Std(X) 1% 6%
Mean(Y) 9% 11%
Std(Y)  14% 3%

Heave (neg)

N DMS
B FYW

%]
o
T

Pitch

E LH EEA
CENTRALE

Yaw

Um.s™') 12 18
Mean(p) 13% 6%
Std(p)  14% 24%
Mean(0) 10% 5%
Std(9) 0% 2%
Mean(yp) 19% 4%
Std(yp) 1% 2%
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Force coefficient

-1.0

H2 @Erodynamic torque and power coefficient at U=12.0m. s7t

Force or torque coefficient

Mean and std: aerodynamics

1.5

H2 Aerodynamic forces on rotor at U=12.0m.s !
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Aerodynamic torque and power coeficients
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H2 Aerodynamic forces on rotor at /=18.0m.s !
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Loads on a blade element

= Tangential load on equatorial blade element on a revolution

— 25% relative difference on mean load at 12m.s™!
— 37% relative difference on std at 12m.s~?!
* |mpact if considering flexible blades ?
TSR = 3.5 TSR =2
H2 Equatorial element tangential force at U=12.0m.s ! H2 Equatorial element tangential force at U=18.0m.s !
' | | ' ' — DMS g : : | | | — pwms|]
— W —

R (kN)

0 50 100 150 200 250 300 _ 350 50 100 150 200 250 300 _ 350
Azimuth (deg) Azimuth (deg)

0
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Conclusions

=  On this case, with the OC3Hywind SPAR platform:

Impact of the aerodynamic model on the H2 (OC3 load case): DMS vs. FVW
— No substantial effect on PSDs (except transversal motions)
— Same conclusion on the motion RAOs with wind

Difficult to process mooring line tensions with this mooring model
— Added linear stiffness in yaw, designed for a HAWT
— A more detailed model could be important

When focusing on mean and std:
— At low TSR: models behave similarly

— At high TSR: important differences on mean and std for
* Aerodynamic loads
* Motions

- DMS seems to miss important aerodynamic unsteady effects due to strong rotor/wake
interactions at high TSR

—> It could have a strong impact when looking at blade design (with flexible blades), for instance

=  Similar conclusions are obtained with the H3 VAWT on the same load cases (not presented here...)
— Comparative study to come

LHEEA -
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nWave b
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Coupled simulation tool: seakeeping

= /nWave is developed at INNOSEA in collaboration with LHEEA Lab. of Centrale Nantes

= Key features:

Hydrodynamics: linear potential flow solver Nemoh (developed at Centrale Nantes)
Mechanics: multi-body solver

Quasi-steady mooring model (MAP++)

Accounts for Power Take Off (generator) and control laws (blade pitch and/or generator)
Solves the equations of motion in time domain using RK4 or Adams-Moulton scheme
Considers regular or irregular waves

7
0,

LHEEA
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Coupled simulation tool: FVW solver
CACTUS

Code for Axial and Cross-flow TUrbine Simulation
Developed at Sandia National Laboratories (BSD License)

=  Free Vortex Wake theory — lifting line theory Sandia
— Potential flow, unsteady lNaEg:JUrg?(Illies
— Either HAWT or VAWT

Works with known profiles (Cy4, C;, Cp,)

Inherently accounts for tip vortices, rotor/wake interactions, skewed inflow

Computes:

Unsteady aerodynamic loads, including the tower shadow
Including dynamic stall models:

* Boeing-Vertol
Leishman-Beddoes

Pitch rate and added mass effects

Validated on fixed horizontal and vertical rotors

Added:

Parallel computing, turbulent inflow, visualizations, platform motions

LH EEA
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SNL 34 m VAWT

Power Coefficent, Measured and Predicted
Zandia 34m Turbine

o 28 RFM

V| cacTus 28 RPM
O 34 RFM
== CACTUS 34 RPM
L & 3@ RPM
== CACTUS 38 RPM

I I L
= B v
Tip Speed Ratio [

(Murray et al., 2011)
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Coupled simulation tool: DMS solver

Lateral view Upwind view
Z’ z
------ AT
. ! p 2
= Theory from Paraschivoiu (2002) PR N e
. ' ’ Vo r&Blcos8l ¥ \
— Assumes steady and potential flow S e e 9
! . A&
— Large number of double streamtubes Do ™ | A S | et
— With actuator disks upwind and downwind Mg sty &
L] x ’ y
= Added: (Parachivoiu, 2002 2
. . l 'sl -
— Leishman-Beddoes dynamic stall model : Eg (I
— Skew model as presented in Wang (2015) v )
. o . . i r r I I
— Validated on a fixed turbine (SANDIA 17m) (Akins, 1986) S ' i
. Gight path Rotor element ABCD replaced b
— And in a skewed flow (Mertens, 2003) Plon view igsbeighong ot
Mean power coefficient at 42.2 RPM Torque at RPM38.7 and TSR3.5 Non-dimensional CP as a function of skew angle
0.5} - I S I — . -I Expe. [ ‘ 251 e o Mertens exp.
: — DMST 151 S - - e i ) 1 — Mertens model
04 fo e e *—*. FVW || 20} «— |InWave/DMST ||
.2 £ 10t = 15|
g Qf 1.0
g s
| = . . [¥)
e e (Akins, 1986) Meas. 031
0 - - (Akins, 1986) DMST * 9
— DMST 0.0k
: : S — Fvw
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TSR Angular position 4 (°) v (deg)
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Control algorithm (Merz, 2013)

= Adapted by (Cheng, 2016)

0 0 _-Baseline controller

o N QN .

] Vg

= ~__ \

% | T~ \

G Qopt | g N - Constant power for
| AN | over-rated wind speeds
| “Improved controller
|
|
|

V|n VQN VN
o —| Notch 1
filter 1+ 145
2p freq. {lmes
V< VN Qpes AQ
T — —— ook-up table:
/ - . i
V> Uy
v —s 1 N Look-up table:
1+ 1ys vV -0

(Cheng, 2016)

LHEEA
EERA DeepWind'2018 - Wednesday, the 17th of sanuary 2018 - V. Leroy [ni5 @ ©INNOSEA I T



« Code-to-code » comparison

=  First study on a floating HAWT with InWave + CACTUS
— OC3Hywind + NREL5SMW (OC3)

— J.Jonkman et al., “Definition of the Floating System for Phase IV of OC3. Technical Report
NREL/TP-500-47535”, National Renewable Energy Laboratory, National Renewable Energy
Laboratory, 2010

= Presented at OMAE2017 @Trondheim, Norway

— V. Leroy, J.-C. Gilloteaux, M. Philippe, A. Babarit & P. Ferrant, “Development of a
simulation tool coupling hydrodynamics and unsteady aerodynamics to study Floating
Wind Turbines”, Proceedings of the ASME 2017 36" International Conference on Ocean,
Offshore and Arctic Engineering, OMAE2017, June 25-30, 2017, Trondheim, Norway, 2017
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Studied Floating HAWT and VAWTs

=  NREL5MW HAWT on the OC3Hywind SPAR (Jonkman, 2010)

2 and 3 bladed H-VAWTs of equal solidity, on the OC3Hywind SPAR
— Designed by (Cheng, 2016)

= Same mooring system, with an added linear spring acting in Yaw (Jonkman, 2010)

= Rigid bodies (SPAR, tower and blades)

= Studied:
— Motions RAOs from “white noise” waves and wind (DMS vs. FVW)

— OC3 load cases in time domain for the VAWTs with DMS vs. FVW solvers
* H2 presented today

Line 2

Waves )
Line 1

Line 3

[Nsf @ ©INNOSEA I I

h._r‘
EERA DeepWind'2018 - Wednesday, the 17th of January 2018 - V. Leroy



RAO (m/m)

Free surface elevation with white noise waves

0.6
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0.2

0.0

n(t) (m)

Motion RAOs from time domain

=  Conditions:
— White noise waves

4800 4850 4900 4950 5000
time (s)

— Constant wind: U, = 0,8,12,18 m.s~ 1 (Only BEM (FAST) for HAWT or DMS for VAWTs)
= Post-processing:
— PSD computation as in (Ramachandran et al., 2013) E:::E N RE L

NATIONAL RENEWABLE ENERGY LABORATORY

— RAO(w) = S"‘L""(w), on the waves frequencies
waves ()

Surge RAOs comparison - H2 vs. H3 (DMS) 10

Pitch RAOs comparison - H2 vs. H3 (DMS)
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Impact of aero model and RAOs

=  Comparison of these RAOs for VAWTs: DMS vs. FVW

Heave RAOs of H2 - DMS vs. FVW Pitch RAOs of H2 - DMS vs. FVW
Bl | — DMS-U,=12m.s" ' '
‘ : ‘ — FVW-U,=12m.s

. , — DMS- U, —12m. s
e — FVW-U., —12m. s

% : DMS - U, = 18m. s~
FVW - U, = 18m. 5~

e -e DMS-U,_=18m.s~

No effect on heave

RAQO (m/m)

Damping seems to be
——{ more important in FVW
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