Load Mitigation through Advanced Controls for an Active Pitch to Stall Operated Floating Wind Turbine

Dawn Ward

Researcher, Offshore Energy Engineering Centre, Cranfield University, Bedfordshire, UK

17 January 2018, EERA DeepWind 2018, Trondheim, Norway
1. Context and Problem Statement
2. Aims, Objectives & Approach
3. Results
4. Conclusions
5. Q & A
1. Context and Problem Statement

- Usual to utilize offshore turbines designed for a fixed base on floating platforms
1. Context and Problem Statement

- Usual to utilize offshore turbines designed for a fixed base on floating platforms
- FOWT experience increased tower base for-aft moments due to platform motion
1. Context and Problem Statement

- Usual to utilize offshore turbines designed for a fixed base on floating platforms
- FOWT experience increased tower base for-aft moments due to platform motion
- All pitch-to-feather HAWTs experience 'negative damping' which can cause tower fore-aft oscillations that increase the loads on the tower
1. Context and Problem Statement

- Advanced control strategies can reduce the platform motion and hence loads on the tower
1. Context and Problem Statement

• Advanced control strategies can reduce the platform motion and hence loads on the tower

• Blades that pitch-to-stall cause a drag force which increases with wind speed, therefore avoid undesirable ‘negative damping’ effects.
2. Aim, Objectives & Approach

The aim is to assess whether pitching the turbine blades actively to stall in Region III, using advanced control strategies, could aid in reducing the loads on the tower of a turbine coupled to a semi-submersible platform design.
2. Aim, Objectives & Approach

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
2. Aim, Objectives & Approach

• DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.

• Controllers designed in Simulink (MATLAB)
2. Aim, Objectives & Approach

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.
2. Aim, Objectives & Approach

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.
- Fast provides an inbuilt interface with Simulink.
2. Aim, Objectives & Approach

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.
- Fast provides an inbuilt interface with Simulink.
- Identify fatigue reduction benefits available from different control strategies.
3. Results - Baseline pitch-to-stall controller

- Constant gain, closed-loop, feedback PI pitch controller
- Input = Error (the difference between the set-point (rated) and the actual rotor speed)
- Output = the summed results after K_P & K_I are applied & added to the equilibrium pitch value
3. Results - Periodic steady wind responses

- Initially unstable and would not converge
- K_P & K_I gains increased
3. Results - Periodic steady wind responses

- Initially unstable and would not converge
- K_P & K_I gains increased
- Excessive blade deflections - striking the tower
- Blade flapwise stiffness increased
- A realistic active stall designed blade would be preferable
3. Results - Periodic steady wind responses

• Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
3. Results - Periodic steady wind responses

- Reduction in blade pitch angle in stall
 (-8.1° compared to 22.9°)

- Positive thrust force
 i.e. avoiding the negative damping
 (891kN to 1361kN stall)
 (891kN to 402kN feather)
3. Results - Periodic steady wind responses

- Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
- Positive thrust force i.e. avoiding the negative damping (891kN to 1361kN stall) (891kN to 402kN feather)
- Performance equal
3. Results - Periodic steady wind responses

- Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
- Positive thrust force i.e. avoiding the negative damping (891kN to 1361kN stall) (891kN to 402kN feather)
- Performance equal
- Increase in tower deflection

17 January 2018, EERA DeepWind 2018, Trondheim, Norway
3. Results - Gain scheduling benefits

- 12mps mean turbulent winds irregular waves Hs 2m, Tp 7s
- Gain scheduling more complex in stall, may require 2 controller schedules

 + Faster response
3. Results - Gain scheduling benefits

- 12mps mean turbulent winds
- Irregular waves H_s 2m, T_p 7s
- Gain scheduling more complex in stall, may require 2 controller schedules
 + Faster response
 + Improved performance

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601
3. Results - Gain scheduling benefits

- 12mps mean turbulent winds irregular waves Hs 2m, Tp 7s
- Gain scheduling more complex in stall, may require 2 controller schedules
 + Faster response
 + Improved performance
 + Loads & motion reduced

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Case ID} & \text{Control Regime} & \text{Natural Frequency, } \omega_n (\text{rad/s}) & \text{Damping Ratio, } \zeta & \text{Proportional Gain, } K_p (\text{rad}) & \text{Integral Gain, } K_I \\
\hline
\text{Case F1} & \text{Feather: Gain Scheduling} & 0.2 & 0.7 & 0.006275694 & 0.000896515 \\
\text{Case S1} & \text{Stall: Constant Gains at 12mps} & 0.6 & 0.7 & -0.08553923 & -0.03666824 \\
\text{Case S2} & \text{Stall: Constant Gains at 18mps} & 0.6 & 0.7 & -0.00772205 & -0.00330945 \\
\hline
\end{array}
\]

*at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semi-submersible Floating System for Phase II of OC4, NREL/TP-5000-60601
3. Results - Tower base fore-aft load mitigation

- 18 mps mean turbulent winds irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 ∴ proportional gain too low

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Control Regime</th>
<th>Natural Frequency, (y_{nat}) (rads)</th>
<th>Damping Ratio, (\xi)</th>
<th>Proportional Gain, (K_p) (g)</th>
<th>Integral Gain, (K_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case F1</td>
<td>Feather, Gain Scheduling</td>
<td>0.2</td>
<td>0.7</td>
<td>-0.009275634^*</td>
<td>-0.008365145^*</td>
</tr>
<tr>
<td>Case F2</td>
<td>Feather, Constant Gains at 18 mps</td>
<td>0.2</td>
<td>0.7</td>
<td>-0.00919716</td>
<td>-0.00931245</td>
</tr>
<tr>
<td>Case F3</td>
<td>Stabilization, Constant Gains at 18 mps</td>
<td>0.6</td>
<td>0.7</td>
<td>-0.00772212</td>
<td>-0.00336955</td>
</tr>
<tr>
<td>Case S4</td>
<td>Stall Constant Gains at 18 mps x 10</td>
<td>0.6</td>
<td>0.7</td>
<td>-0.00772205</td>
<td>-0.00309845</td>
</tr>
<tr>
<td>Case S5</td>
<td>Stall Constant Gains at 18 mps x 100</td>
<td></td>
<td></td>
<td>-0.772205</td>
<td>-0.339450</td>
</tr>
</tbody>
</table>

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601
3. Results - Tower base fore-aft load mitigation

- 18mps mean turbulent winds
- Irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 - Proportional gain too low
- Pitch actuation increased

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Control Regime</th>
<th>Natural Frequency, (f_n) (rad/s)</th>
<th>Damping Ratio, (\zeta)</th>
<th>Proportional Gain, (K_p) (%)</th>
<th>Integral Gain, (K_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case F1</td>
<td>Feather, Gain Scheduling</td>
<td>0.2 *</td>
<td>0.7 *</td>
<td>0.000275654 *</td>
<td>0.000965145 *</td>
</tr>
<tr>
<td>Case F2</td>
<td>Feather, Constant Gains at 18mps</td>
<td>0.2 *</td>
<td>0.7 *</td>
<td>0.0019716 *</td>
<td>0.0002745 *</td>
</tr>
<tr>
<td>Case S3</td>
<td>Stall, Constant Gains at 18mps</td>
<td>0.6 *</td>
<td>0.7 *</td>
<td>-0.0777221 *</td>
<td>-0.0033955 *</td>
</tr>
<tr>
<td>Case S4</td>
<td>Stall, Constant Gains at 18mps \times 10</td>
<td>0.6 *</td>
<td>0.7 *</td>
<td>-0.6772260 *</td>
<td>-0.0330945 *</td>
</tr>
<tr>
<td>Case S5</td>
<td>Stall, Constant Gains at 18mps \times 100</td>
<td>0.6 *</td>
<td>0.7 *</td>
<td>-0.7722950 *</td>
<td>-0.3309450 *</td>
</tr>
</tbody>
</table>

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase I of OC4, NREL/TP-5000-60691
3. Results - Tower base fore-aft load mitigation

- 18mps mean turbulent winds
- Irregular waves Hs 4m, Tp 10s

- Response too slow with calculated gains → proportional gain too low
- Pitch actuation increased
- Performance improved
3. Results - Tower base fore-aft load mitigation

- 18mps mean turbulent winds
 - irregular waves Hs 4m, Tp 10s

- Response too slow with calculated gains
 - proportional gain too low

- Pitch actuation increased

- Performance improved

- Tower base fore-aft moment range & StD lower than F2
4. Conclusions

- A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.
4. Conclusions

• A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.

• Increasing the gains gave improved performance and reductions in the tower base fore-aft moment range.
4. Conclusions

• A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.

• Increasing the gains gave improved performance and reductions in the tower base fore-aft moment range.

• The increase in positive mean of the platform pitch and tower fore-aft motions compared to feather indicate that this platform’s stability would need increasing, for a pitch to stall operating regime.
Thank you for your time

Questions and Advice welcome

Dawn.Ward@cranfield.ac.uk