

Load Mitigation through Advanced Controls for an Active Pitch to Stall Operated Floating Wind Turbine

Dawn Ward

Researcher, Offshore Energy Engineering Centre, Cranfield University, Bedfordshire, UK

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

*Third Generation Wind Power - DNV.GL

Context and Problem Statement Aims, Objectives & Approach Results Conclusions Q & A

• Usual to utilize offshore turbines designed for a fixed base on floating platforms

- Usual to utilize offshore turbines designed for a fixed base on floating platforms
- FOWT experience increased tower base for-aft moments due to platform motion

- Usual to utilize offshore turbines designed for a fixed base on floating platforms
- FOWT experience increased tower base for-aft moments due to platform motion
- All pitch-to-feather HAWTs experience 'negative damping' which can cause tower fore-aft oscillations that increase the loads on the tower

17 January 2018, EERA DeepWind 2018, Trondheim, Norway ation Wind Power - DNV.GL

 Advanced control strategies can reduce the platform motion and hence loads on the tower

- Advanced control strategies can reduce the platform motion and hence loads on the tower
- Blades that pitch-to-stall cause a drag force which increases with wind speed, therefore avoid undesirable 'negative damping' effects.

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

ion Wind Power - DNV.GL

The aim is to assess whether pitching the turbine blades actively to stall in Region III, using advanced control strategies, could aid in reducing the loads on the tower of a turbine coupled to a semi-submersible platform design.

 DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.
- Fast provides an inbuilt interface with Simulink.

- DeepCwind semisubmersible model coupled to the three bladed NREL 5MW HAWT.
- Controllers designed in Simulink (MATLAB)
- Simulations utilizing FAST to predict system responses and loads in the time domain.
- Fast provides an inbuilt interface with Simulink.
- Identify fatigue reduction benefits available from different control strategies.

EPSRC

17 January 2018, EERA DeepWind 2018, Trondheim, Norway tion Wind Power - DNV.GL

3. Results - Baseline pitch-to-stall controller

- Constant gain, closedloop, feedback PI pitch controller
- Input = Error (the difference between the set-point (rated) and the actual rotor speed)
- Output = the summed results after KP & KI are applied & added to the equilibrium pitch value

- 3. Results Periodic steady wind responses
 - Initially unstable and would not converge
 - KP & KI gains increased

- 3. Results Periodic steady wind responses
 - Initially unstable and would not converge
 - KP & KI gains increased
 - Excessive blade deflections striking the tower
 - Blade flapwise stiffness increased
 - A realistic active stall designed blade would be preferable

EPSRC Engineering and Physical Scien Research Council

 Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)

EPSRC

Engineering and Physical Science Research Council

- Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
- Positive thrust force

 avoiding the negative
 damping
 (891kN to 1361kN stall)
 (891kN to 402kN feather)

EPSRC

Engineering and Physical Science Research Council

- Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
- Positive thrust force i.e. avoiding the negative damping (891kN to 1361kN stall) (891kN to 402kN feather)
- Performance equal

EPSRC

Engineering and Physical Science Research Council

- Reduction in blade pitch angle in stall (-8.1° compared to 22.9°)
- Positive thrust force

 avoiding the negative
 damping
 (891kN to 1361kN stall)
 (891kN to 402kN feather)
- Performance equal
- Increase in tower deflection

EPSRC

Engineering and Physical Science Research Council

3. Results - Gain scheduling benefits

- 12mps mean turbulent winds irregular waves Hs 2m, Tp 7s
- Gain scheduling more complex in stall, may require 2 controller schedules
- + Faster response

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather: Gain Scheduling	0.2*	0.7*	0.006275604*	0.000896515*
Case S1	Stall: Constant Gains at 12mps	0.6	0.7	-0.08555923	-0.03666824
Case S2	Stall: Constant Gains at 18mps	0.6	0.7	-0.00772205	-0.00330945

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601

Case S1 - Stall: Constant Gains at 12mps

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

---- Case F1 - Feather: Gain Scheduling

*Third Generation Wind Power - DNV.GL

ase S2 - Stall: Constant Gains at 18mps

3. Results - Gain scheduling benefits

- 12mps mean turbulent winds irregular waves Hs 2m, Tp 7s
- Gain scheduling more complex in stall, may require 2 controller schedules
- + Faster response
- + Improved performance

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather: Gain Scheduling	0.2*	0.7*	0.006275604*	0.000896515*
Case S1	Stall: Constant Gains at 12mps	0.6	0.7	-0.08555923	-0.03666824
Case S2	Stall: Constant Gains at 18mps	0.6	0.7	-0.00772205	-0.00330945

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601

EPSRC Engineering and Physical Sciences Research Council

3. Results - Gain scheduling benefits

- 12mps mean turbulent winds irregular waves Hs 2m, Tp 7s
- Gain scheduling more complex in stall, may require 2 controller schedules
- + Faster response
- + Improved performance
- + Loads & motion reduced

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather: Gain Scheduling	0.2*	0.7*	0.006275604*	0.000896515*
Case S1	Stall: Constant Gains at 12mps	0.6	0.7	-0.08555923	-0.03666824
Case S2	Stall: Constant Gains at 18mps	0.6	0.7	-0.00772205	-0.00330945

* at minimum pitch setting, Ref: Robertson A et al, 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601

Engineering and Physical Sciences Research Council

EPSRC

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

- 3. Results Tower base fore-aft load mitigation
- 18mps mean turbulent winds irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 proportional gain too low

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather, Gain Scheduling	0.2*	0.7*	0.006275604*	0.0008965149*
Case F2	Feather: Constant Gains at 18mps	0.2	0.7	0.0019216	0.0002745
Case S3	Stall: Constant Gains at 18mps	0.6	0.7	-0.0077221	-0.0033095
Case S4	Stall Constant Gains at 18mps x 10			-0.0772205	-0.0330945
Case S5	Stall:Constant Gains at 18mps x 100			-0.7722050	-0.3309450

----- Case F1 - Feather, Gain Scheduling - - Case S4 - Stall Constant Gains at 18mps x 10 Case F2 - Feather: Constant Gains at 18mps
 Case S5 - Stall:Constant Gains at 18mps x 100

---- Case S3 - Stall: ConstantGains at 18mps

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

- 3. Results Tower base fore-aft load mitigation
- 18mps mean turbulent winds irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 proportional gain too low
- Pitch actuation increased

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio,ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather, Gain Scheduling	0.2*	0.7*	0.006275604*	0.0008965149*
Case F2	Feather: Constant Gains at 18mps	0.2	0.7	0.0019216	0.0002745
Case S3	Stall: Constant Gains at 18mps	0.6	0.7	-0.0077221	-0.0033095
Case S4	Stall Constant Gains at 18mps x 10			-0.0772205	-0.0330945
Case S5	Stall:Constant Gains at 18mps x 100			-0.7722050	-0.3309450

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

- 3. Results Tower base fore-aft load mitigation
- 18mps mean turbulent winds irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 proportional gain too low
- Pitch actuation increased
- Performance improved

Case	D Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case	1 Feather, Gain Scheduling	0.2*	0.7*	0.006275604*	0.0008965149*
Case	2 Feather: Constant Gains at 18mps	0.2	0.7	0.0019216	0.0002745
Case	3 Stall: Constant Gains at 18mps	0.6	0.7	-0.0077221	-0.0033095
Case	4 Stall Constant Gains at 18mps x 10			-0.0772205	-0.0330945
Case	5 Stall:Constant Gains at 18mps x 100			-0.7722050	-0.3309450

Case S5 - Stall:Constant Gains at 18mps x 100

EPSRC Engineering and Physical Sciences Research Council

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

– – Case S4 - Stall Constant Gains at 18mps x 10

- 3. Results Tower base fore-aft load mitigation
- 18mps mean turbulent winds irregular waves Hs 4m, Tp 10s
- Response too slow with calculated gains
 proportional gain too low
- Pitch actuation increased
- Performance improved
- Tower base fore-aft moment range & StD lower than F2

Case ID	Control Regime	Natural Frequency, Wφn (rad/s)	Damping Ratio, ξφ	Proportional Gain, Kp (s)	Integral Gain, Ki
Case F1	Feather, Gain Scheduling	0.2*	0.7*	0.006275604*	0.0008965149*
Case F2	Feather: Constant Gains at 18mps	0.2	0.7	0.0019216	0.0002745
Case S3	Stall: Constant Gains at 18mps	0.6	0.7	-0.0077221	-0.0033095
Case S4	Stall Constant Gains at 18mps x 10			-0.0772205	-0.0330945
Case S5	Stall:Constant Gains at 18mps x 100			-0.7722050	-0.3309450

Case S5 - Stall:Constant Gains at 18mps x 100

Engineering and Physical Sciences Research Council

EPSRC

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

Case S4 - Stall Constant Gains at 18mps x 10

4. Conclusions

 A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.

4. Conclusions

- A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.
- Increasing the gains gave improved performance and reductions in the tower base fore-aft moment range

4. Conclusions

- A robust control system with gain scheduling for stall operation could be further enhanced when coupled to other advanced control strategies.
- Increasing the gains gave improved performance and reductions in the tower base fore-aft moment range
- The increase in positive mean of the platform pitch and tower fore-aft motions compared to feather indicate that this platform's stability would need increasing, for a pitch to stall operating regime.

17 January 2018, EERA DeepWind 2018, Trondheim, Norway ation Wind Power - DNV.GL

Thank you for your time

Questions and Advice welcome

Dawn.Ward@cranfield.ac.uk

17 January 2018, EERA DeepWind 2018, Trondheim, Norway

12

DNV.GL