EERA DeepWind'2018 15th Deep Sea Offshore Wind R&D Conference, Trondheim, 17 - 19 January 2018

Initial Design of a 12 MW Floating Offshore Wind turbine

Pham Thanh Dam, Byoungcheon Seo, Junbae Kim, Hyeonjeong Ahn, Rupesh Kumar, Dongju Kim and Hyunkyoung Shin^{*†}

School of Naval Architecture & Ocean Engineering, University of Ulsan, Korea EERA DeepWind'2018, JAN. 17, 2018, Trondheim, Norway

Outline

- 12MW FOWT design
- Numerical Simulation
- Design Load Cases
- Results
- Conclusion

12MW FOWT Design

UOU 12MW Wind Turbine Model

문 조선해

12MW Blade Scale ratio

•
$$P = C_p * \frac{1}{2}\rho A V^3$$

•
$$\lambda_{Blade} = \sqrt{\frac{P_{12MW}}{P_{5MW}}} = 1.549$$

- P: Rotor power(kW)
- ρ : Air density (1.225 kg/m³)
- A: Rotor swept area (m^3)
- V: Wind speed (m/s)
- λ_{Blade} : Blade Scale Ratio

Source : EWEA, Wind energy—the facts: a guide to the technology, economics and future of wind power, 2009.

12MW Carbon blades

- > 61.5 (m) 5MW glass blade : 17.7 ton
 - → 95.28 (m) 12MW glass blade : 62.6 ton (Too heavy)
 - \rightarrow 95.28 (m) 12MW carbon (sparcap) blade : 42.7 ton

Sparcap (43% of the total weight – 5MW class IIA)

	0° Stiffness [Gpa]	Density [kg/m³]	Blade Weight [ton]	Center of Gravity [m]		
CFRP	130	1572	42.7 (Carbon Sparcap)	31.8		
GFRP	41.5	1920	62.6	31.8		
Source : H. G. Lee, Korea Institute of Materials Science(KIMS)						

N.F. [Hz]	1 st Flapwise	2 nd Flapwise	1 st Edgewise	2 nd Edgewise
12MW Blade	0.5770	1.6254	0.8920	3.2676

Scale-up blade properties(deflection)

12MW Super conductor synchronous generator

월 문산대학교 공과대학 조선해양공학

12MW Tower properties

Scale up using <u>offshore tower</u> from OC4 definition

12MW "Material : steel, Height : 110.88 m, Weight : <u>781.964 ton</u> (scale-up)" [cf. UPWIND report 2011 : 983 ton (10MW), 2,780 ton (20MW)]

12MW Campbell diagram (Tower Redesign)

Tower Length : 104.23 m

• Tower Mass : **735,066 kg**

Rotor speed : 8.25 rpm

- Rotor 3P-Excitation : 0.4125
- > Tower 1^{st} Side to Side Natural Frequency : 0.4337

Design Summary

Rating	5 MW	12 MW
Rotor Orientation	Upwind, 3 Blades	Upwind, 3 Blades
Control	Variable Speed, Collective Pitch	Variable Speed, Collective Pitch
Drivetrain	High Speed, Multiple-Stage Gearbox	Low Speed, Direct Drive(gearless)
Rotor, Hub Diameter	126 m, 3 m	195.2 m, 4.64 m
Hub Height	90 m	118 m
Cut-In, Rated, Cut-Out Wind Speed	3 m/s, 11.4 m/s, 25 m/s	3 m/s, 11.2 m/s, 25 m/s
Cut-In, Rated Rotor Speed	6.9 rpm, 12.1 rpm	3.03 rpm, 8.25 rpm
Overhang, Shaft Tilt, Pre-cone	5 m, 5°, 2.5°	7.78 m, 5°, 3°
Rotor Mass	110,000 kg	297,660 kg
Nacelle Mass	240,000 kg	400,000 kg (<i>Target</i>)
Tower Mass (for offshore)	249,718 kg	735,066 kg

OC4 semi-submersible models

OC4 semi-submersible models

Elements	Parameters	Unit	OC4 semi Original	OC4 semi NTNU Optimal (*)	OC4 semi UOU-modified	Air vent pipe Original OC4 Sem
	Diameter	m	6.5	6.5	6.500	Offset column
Main column	Wall thickness	m	0.03	0.030	0.030	column
	Elevation above SWL	m	10	10.000	10.000	
	Depth of base below SWL	m	20	20.000	20.000	
	Wall thickness	m	0.06	0.060	0.060	
Offect Column	Elevation above SWL	m	12	12.000	12.000	
Unset Column	Spacing between OCs	m	50	50.000	50.000	Footing pontoon
	Depth of base below SWL	m	20	20.000	20.000	
	Diameter	m	12	9.900	9.900	Air NTNU optimal
Upper Column	Length	m	26	26.000	26.000	
	Height of Ballast (water)	m	7.83	2.630	1.390	Upper Offset column
	Diameter	m	24	24.000	23.500	column Offset column
Footing Pontoon	Length	m	6	6.000	6.000	
_	Height of Ballast (water)	m	5.0478	5.625	5.880	
	Platform steel	kg	3,852,000	3,567,000	3,502,000	
Mass	Platform ballast	kg	9,620,820	8,350,000	8,068,000	Footing pontoon
IVIDSS	Platform total	kg	13,472,820	11,917,000	11,570,000	Air Octoor Holl
	Total system	kg	14,072,538	12,516,718	12,169,718	vent OC4 semi UOU pipe modified
Bouyancy	Volume	m3	13,917	12,402	12,054	dolumn Offset column
	CB below SWL	m	-13.15	-13.93	-13.48	

Fulfill ballast water in base column tanks (water level is on the top of air vent pipe) will reduce the difference of pressure between inside and outside footing ballast tank

Footing pontoon

(*) Leimeister, NTNU 2016, Rational Upscaling and Modelling of a Semi-Submersible Floating Offshore Wind Turbine

Principle of platform upscaling

	Diameter	K1	Ratio tower base diameter upscale/original
	Wall thickness	K1	Ratio tower base diameter upscale/original
Main column	Elevation above SWL	К	Ratio WT mass Upscale/original
	Depth of base below SWL	К	Ratio WT mass Upscale/original
	Wall thickness	К	Ratio WT mass Upscale/original
Offeret Calumana	Elevation above SWL	К	Ratio WT mass Upscale/original
Offset Columns	Spacing between OCs	К	Ratio WT mass Upscale/original
	Depth of base below SWL	К	Ratio WT mass Upscale/original
	Diameter	К	Ratio WT mass Upscale/original
Upper Columns	Length	К	Ratio WT mass Upscale/original
	Heigh of Ballast (water)	К	Ratio WT mass Upscale/original
	Diameter	К	Ratio WT mass Upscale/original
Footing Pontoons	Length	К	Ratio WT mass Upscale/original
	Heigh of Ballast (water)	К	Ratio WT mass Upscale/original
Dinoc	Diameter	К	Ratio WT mass Upscale/original
Pipes	Wall thickness	К	Ratio WT mass Upscale/original

$$K = \sqrt[3]{\frac{12MW _WT _mass}{5MW _WT _mass}}$$

$$K_{1} = \frac{Tower_base_diameter_{12MW}}{Towe_base_diameter_{5MW}}$$

WT_mass includes: Rotor (blades and hub) mass, nacelle mass and tower mass

12 MW platform upscaling

	i		1	i		
Elements	Parameters	Unit	12MW scaled up OC4 Original	12MW scaled up OC4 NTNU Optimize	12MW scaled up OC4 UOU modified	12MW final
	Diameter	m	8.782	8.782	8.782	9.634
	Wall thickness	m	0.041	0.041	0.041	0.041
	Elevation above SWL	m	13.510	13.510	13.510	10.000
	Depth of base below SWL	m	27.020	27.020	27.020	27.020
	Wall thickness	m	0.081	0.081	0.081	0.081
Offcat Column	Elevation above SWL	m	16.212	16.212	16.212	12.000
	Spacing between OCs	m	67.550	67.550	67.550	67.550
	Depth of base below SWL	m	27.020	27.020	27.020	27.020
	Diameter	m	16.212	13.375	13.375	13.375
Upper Column	Length	m	35.126	35.126	35.126	30.914
	Height of Ballast (water)	m	10.410	10.410	1.878	3.600
	Diameter	m	32.424	32.424	31.716	31.716
Footing Pontoon	Length	m	8.106	8.106	8.106	8.106
	Height of Ballast (water)	m	6.820	7.599	7.944	7.944
	Platform steel	kg	9,501,600	8,798,600	8,638,267	8,168,000
Mass	Platform ballast	kg	23,731,356	20,596,667	19,901,067	20,855,000
IVIdSS	Platform total	kg	33,232,956	29,395,267	28,539,333	28,978,000
	Total system	kg	34,712,260	30,874,571	30,018,638	30,457,418
Bouyancy	Volume	m3	34,329	30,592	30,049	30,049
	CB below SWL	m	-17.77	-18.81943	-18.21	-18.21

12 MW platform upscaling

OC4 semi UOU-modified scaled up for 12 MW FOWT

12 MW FOWT platform - final

12 MW FOWT Platform modification based on:

- Reduced main column elevation above MSL to 10 m

- Reduced offset column elevation above MSL to 12 m

(the same as OC4 semi-submersible model)

Platform steel mass reduction

Parameters	Unit	12MW scaled up OC4 Original	12MW scaled up OC4 NTNU Optimize	12MW scaled up OC4 UOU Modified	12MW final
Platform steel	ton	9,525	8,822	8,661	8,168
Difference	%	0.0%	7.4%	9.1%	14.0%

Checking structure strength

Calculate equivalence stress for the inner wall of bottom point of upper column

$$\sigma_{\rm equ} = \sqrt{\sigma_{\rm t}^2 + \sigma_{\rm r}^2 + \sigma_{\rm ax}^2 - \sigma_{\rm t}\sigma_{\rm r} - \sigma_{\rm t}\sigma_{\rm ax} - \sigma_{\rm r}\sigma_{\rm ax}}$$

Pressure checking point: inner wall of upper column at lowest position

Elements	Parameters	Unit	5MW OC4 Original	12MW scaled up OC4 Original	OC4 NTNU Optimal	12MW scaled up OC4 NTNU Optimize	OC4 UOU- modified	12MW scaled up UOU OC4 modified	12MW final
Ptank min, Pwater max	σ_eq	Мра	47.50	60.17	39.25	49.73	39.25	49.73	49.76
Steel AH36 (t~80mm)	Yield stress	Мра	325	325	325	325	325	325	325
Steel SS400 (t~80mm)	Yield stress	Мра	245	245	245	245	245	245	245

12MW Stability analysis

Reference location: West of Barra - Scotland

Mean Wind Direction (direction from)

Source: LIFE50+ 'D1.1 Oceanographic and meteorological conditions for the design' 2015

Mooring lines arrangement

월산대학교 공과대학 조선해양공학부

Mooring lines arrangement

Mooring line properties

Water Depth	m	100
Mooring Line Diameter (d)	mm	162
Number of Mooring Lines	-	3
Angle Between Adjacent Lines	deg	120
Depth to Anchors below SWL	m	100
Fairleads Location above SWL	m	10
Radius to Anchors from Platform Centerline	m	801.5
Radius to Fairleads from Platform Centerline	m	45.7
Equivalent Mooring Line Extensional Stiffness EA	Ν	2.360E+09
Minimum Breaking Load	Ν	2.600E+07
Segment 1 (top side) 162mm mooring stud chain, mater	rial class R	5
Un-stretched Mooring Line Length	m	385
Equivalent Mooring Line Mass Density	kg/m	522.73
Segment 2 (Anchor side) 2x162mm mooring stud chain	, material	class R5
Un-stretched Mooring Line Length	m	400
Equivalent Mooring Line Mass Density	kg/m	1045.46
Equivalent Mooring Line Extensional Stiffness EA	Ν	2.360E+09
Minimum Breaking Load	Ν	2.600E+07

Mooring line tension excursion

Mooring line angle at fairlead

PI controller

• Results using FAST Linearization with frozen wake assumption

Numerical Simulation

Flow Diagram of UOU + FAST v8

UOU in-house code

> Hydrodynamic coefficients need for numerical simulation in hydro part

Hydrodynamic in-house code modeling:

- Consider parts under water line
- Neglect pontoons and braces

• UOU in-house code

3D panel method(BEM) Element : 4000

<u>Output</u>

- 1. Added mass coefficients
- 2. Radiation Damping coefficients
- 3. Wave Excitation Forces/Moments

Design Load Cases(DLCs)

Design Load Cases (1/2)

		Winds		Waves	Current	Controls/Events				
DLC	Model	Speed	Model	Height	Direction	Current	Controis/Events			
1) Power	1) Power Production									
1.1	NTM	V_in <v_hub<v_out< td=""><td>NSS</td><td>Hs = E[Hs/V_hub]</td><td>0°</td><td>NCM</td><td>Normal operation</td></v_hub<v_out<>	NSS	Hs = E[Hs/V_hub]	0°	NCM	Normal operation			
1.2	NTM	V_in <v_hub<v_out< td=""><td>NSS</td><td>Hs = E[Hs/V_hub]</td><td>8 directions</td><td>NCM</td><td>Normal operation</td></v_hub<v_out<>	NSS	Hs = E[Hs/V_hub]	8 directions	NCM	Normal operation			
1.4	EDC	V_hub = V_r, V_r+-2m/s	NSS	Hs = E[Hs/V_hub]	0°	NCM	Normal operation			
1.5	EWS	V_in <v_hub<v_out< td=""><td>NSS</td><td>Hs = E[Hs/V_hub]</td><td>0°</td><td>NCM</td><td>Normal operation</td></v_hub<v_out<>	NSS	Hs = E[Hs/V_hub]	0°	NCM	Normal operation			
1.6a	NTM	V_in <v_hub<v_out< td=""><td>SSS</td><td>Hsss</td><td>0°</td><td>NCM</td><td>Normal operation</td></v_hub<v_out<>	SSS	Hsss	0°	NCM	Normal operation			
2) Power	Production	Plus Occurrence of Fault								
23	FOG	V hub = V r V r+-2m/s V out		Hs – E[Hs/V hub]	٥°	NCM	Loss of load ->			
2.5	100				0		shutdown			
6) Parked										
6.1a	EWM	V_hub = V50	ESS	Hs = Hs50	0° , +-45°	ECM	Yaw = 0, +-8 Deg			
9) Power production: Transient condition between intact and redundancy check condition: 1 mooring line lost										
9.1	NTM	V_in <v_hub<v_out< td=""><td>NSS</td><td></td><td>0°</td><td>NCM</td><td>Normal operation</td></v_hub<v_out<>	NSS		0°	NCM	Normal operation			
10) Parked	d: Transient	condition between intact and red	dundancy o	check condition: 1 mo	poring line los	st				
10.1	EWM	V-hub = V_50	ESS	Hs = Hs50	0°	ECM				

Design Load Cases (2/2)

DLC1.1, DLC1.2, DLC9.1

Wave	NSS		
Current	NCM		
V-hub	Hs	Тр	Current
m/s	m	S	m/s
4	0.35	3.00	0.08
6	0.73	5.77	0.13
8	1.14	7.18	0.17
10	1.60	8.23	0.21
12	2.12	9.11	0.25
14	2.71	9.88	0.29
16	3.39	10.58	0.34
18	4.18	11.24	0.38
20	5.08	11.85	0.42
22	6.12	12.43	0.46
24	7.31	12.99	0.50

DLC1.6

Wind	ETM		
Wave	SSS		
Current	NCM		
V-hub	Hs	Тр	Current
m/s	m	S	m/s
10	11.5	14.4	0.21
11.2	11.5	14.4	0.25
12	15.6	15.2	0.50
24	15.6	15.2	0.50

DLC6.1, DLC10.1

Wind	EWM		
Wave	ESS		
Current	ECM		
V-hub	Hs	Тр	Current
m/s	m	S	m/s
50	15.6	15.2	1.82

Simulation time:

3 hours irregular waves (1h x 3 wave seed numbers) DLC1.2: 1 hour simulation

30

Results

DLC1.1 Minimum, mean, and maximum values

월 문산대학교 공과대학 조선해양공학부

```
UNIVERSITY OF ULSAN
```

DLC1.1 Minimum, mean, and maximum values

Extreme motions of the FOWT in operation conditions

Serviceability Limit States (SLS) during operational: Max. tilt: 10 deg. Nacelle acceleration: 0.3g

Parameter	Tupo	File Name	Unit	Calculated	Time
Parameter	туре	Flie Name	Unit	Extreme	(s)
PtfmSurge	Minimum	DLC1.6-25a.out	m	-1.23	3080.4
PtfmSurge	Maximum	DLC1.6-12a.out	m	17.91	761.1
PtfmSway	Minimum	DLC1.1-10c.out	m	-2.18	542.9
PtfmSway	Maximum	DLC1.1-10a.out	m	2.31	826.4
PtfmHeave	Minimum	DLC1.6-12c.out	m	-3.22	1306.2
PtfmHeave	Maximum	DLC1.6-25a.out	m	2.83	773.8
PtfmRoll	Minimum	DLC1.1-12c.out	deg	-0.33	3402.4
PtfmRoll	Maximum	DLC1.6-25a.out	deg	1.43	3504.3
PtfmPitch	Minimum	DLC1.6-25a.out	deg	-5.98	760.5
PtfmPitch	Maximum	DLC1.6-12b.out	deg	8.69	3365.5
PtfmYaw	Minimum	DLC1.1-24c.out	deg	-6.83	3548.6
PtfmYaw	Maximum	DLC1.1-12c.out	deg	5.16	3402.1
Nacelle acc. Fore-aft	Minimum	DLC1.6-12c.out	m/s^2	-3.12	1305.1
Nacelle acc. Fore-aft	Maximum	DLC1.6-12b.out	m/s^2	3.37	1300.0
Nacelle acc. Side-to-side	Minimum	DLC1.6-25b.out	m/s^2	-1.54	1959.9
Nacelle acc. Side-to-side	Maximum	DLC1.6-25b.out	m/s^2	1.59	1956.5

Extreme motions of the FOWT in parked conditions

Serviceability Limit States (SLS) during non-operational: Max. tilt: 15 deg. (max. value) Nacelle acceleration: 0.6g

Daramatar		l loit	Extreme	Time	
Parameter	туре	Flie Name	Unit	Values	(s)
PtfmSurge	Minimum	DLC6.1-H0-Y8.out	m	9.40	2242.2
PtfmSurge	Maximum	DLC6.1-H0-Y8.out	m	26.79	2329.6
PtfmSway	Minimum	DLC6.1-H-45-Y-8.out	m	-14.28	3490.9
PtfmSway	Maximum	DLC6.1-H45-Y8.out	m	20.51	237.9
PtfmHeave	Minimum	DLC6.1-H45-Y8.out	m	-5.68	3198.4
PtfmHeave	Maximum	DLC6.1-H45-Y8.out	m	4.75	3206.3
PtfmRoll	Minimum	DLC6.1-H-45-Y8.out	deg	-10.27	1408.1
PtfmRoll	Maximum	DLC6.1-H-45-Y-8.out	deg	10.10	3490.5
PtfmPitch	Minimum	DLC6.1-H0-Y8.out	deg	-11.12	2559.0
PtfmPitch	Maximum	DLC6.1-H0-Y0.out	deg	0.35	1706.9
PtfmYaw	Minimum	DLC6.1-H45-Y8.out	deg	-3.13	288.6
PtfmYaw	Maximum	DLC6.1-H45-Y-8.out	deg	8.73	3507.4
Nacelle acc. Fore-aft	Minimum	DLC6.1-H0-Y8.out	m/s^2	-2.72	2908.8
Nacelle acc. Fore-aft	Maximum	DLC6.1-H0-Y8.out	m/s^2	2.34	2913.7
Nacelle acc. Side-to-side	Minimum	DLC6.1-H-45-Y-8.out	m/s^2	-6.33	3497.2
Nacelle acc. Side-to-side	Maximum	DLC6.1-H45-Y8.out	m/s^2	5.93	3128.1

Maximum Mooring line tensions

	Operation	Extreme (parked)
Max. Fairlead 2 Tension [kN]	9.727E+03	2.36E+04
Min. Breaking Load MBL [kN]	2.60E+04	2.60E+04
Ratio Max/MBL	0.374	0.908

Ratios of sea to land of absolute extreme values (all DLCs)

DLC1.2 Fatigue analysis

Comparison between sea and land wind turbine based on :

- The same wind conditions
- The same controller
- Root of blade m= 10, ultimate load L_Ult= 4600 kN
- Tower base m=4, ultimate load L_Ult= 8000 kN

DLC9.1 Motions of the FOWT after a mooring line loss

Conclusion

Conclusion

- A design of the 12 MW FOWT was suggested.
- Lighting wind turbine mass such as super conductor generator, carbon fiber blade, short tower drive a smaller platform scale ratio.
- Strong wave and high current speed has a significant effect to the design of mooring system.
- Mooring line provided in 2 segments with heavier segment at anchor side to avoid the lift up force at the anchor.
- Loads and displacements of blades and tower in sea are higher than those in land
- Wind and wave misalignments have strong effects to nacelle side to side acceleration
 Future work
- Consider 2nd order wave loads
- Optimize mooring system

EERA DeepWind'2018 15th Deep Sea Offshore Wind R&D Conference, Trondheim, 17 - 19 January 2018

THANK YOU!

ACKNOWLEDGMENTS

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20154030200970 and No. 20142020103560).

Added mass

Damping

Hydrodynamic coefficients(1/2)

Design process for a floating offshore wind turbine

Surge	Translation along the longitudinal axis (main wind direction)
Sway	Translation along the lateral axis (transversal to the main wind direction)
Heave	Translation along the vertical axis
Roll	Rotation about the longitudinal axis
Pitch	Rotation about the lateral axis
Yaw	Rotation about the vertical axis

DOFs of a floating wind turbine (DNV-OS-J103)

