Cone penetration data classification by Bayesian inversion with a

Hidden Markov model

Ask S. Krogstad', Ivan Depina’, Henning Omre'

'Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
’Department of Rock and Geotechnical Engineering, SINTEF Building and Infrastructure, Trondheim, Norway

Introduction

The Cone Penetration Test (CPT) is an in-situ test that is frequently applied to estimate subsurface
stratigraphy, soil parameters, and parameters for a direct geotechnical design [4]. Soil classification
from CPT data is commonly based on classification charts with predefined soil classes [6] and [7].
These are often considered no more than as indicative. We investigate the application of the Hidden
Markov Model (HMM) to the CPT classification problem.

Model

Notation

Consider a CPT profile with measurements along the grid £z = {1,..., Z} with z increasing with

depth. A vector of CPT measurements is denoted d : {d.:z = 1, ..., Z}. The actual soil class profile

at the location is denoted & : {r.;z = 1,..., Z}, where x. belongs to a set of different soil classes,

k- € Q {1, ..., K'}. Note that soil classes can be arbitrarily defined to describe different geological

features.

Model definition

We want to calculate the probability of any profile of soil classes given the CPT measurements,

p(k|d). In the Bayesian setting, this probability is denoted as posterior because it incorporates the

measurements with the additional or prior knowledge. The posterior probability is defined according
(d|r)p(k
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lihood model, and p(d) is an normalizing constant. With these two distributions the full posterior is

fully defined. The evaluation of the normalizing constant, p(d), is usually unfeasible and most often

avoided.

Likelihood model

The likelihood model, p(d|), provides a statistical model that relates CPT measurements to soil

classes. The likelihood model is based on two assumptions, conditional independence between the

CPT data vector at each step, d., given « and single site dependence between d. and .. These two

assumptions lead to the following relation:

to the Bayes law as follows p(k|d) = , where p(k) is the prior model, p(d|k), is the like-
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A Gaussian bivariate likelihood model is selected to model the aforementioned relations. The Gaus-
sian bivariate model requires the assessment of mean parameters and covariance matrices for all
classes. These parameters can be estimated by the using the CPT data, d and the actual soil class
profile k vector available from calibration boreholes.

Prior model

As the prior for & a first order Markov chain is selected. Denote the probability of transitioning from
any soil class .1 to any soil class - as p(k-|k.—1). The (K x K) matrix P, with K being the
number of separate soil classes, outline the probability for all possible transitions. The Markov chain
prior is assumed to homogenous. The prior probability of any soil class vector, &, is given by the
following expression

Z
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An estimator P of the transition matrix P is estimated from observed transformations in known soil
profiles. This estimator can be estimated in a strict way, only allowing transitions that are observed,
or in a lenient way, allowing transitions from any formation to any deeper laying formation
Posterior model

Our choices for likelihood and prior models result in a posterior model that is a Hidden Markov Model
(HMM) [5]. In an HMM, the states or the soil classes of the Markov chain are hidden, but at each
step the hidden soil class has a corresponding observation. The structure of the dependencies in the
HMM is visualized in Figure 1.
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We derive the following expression for the posterior
model on a first order Markov chain form.

A
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Note that this posterior Markov chain does not have a sta-

tionary transition matrix. Note also that the Gaussian bi-

variate distributions, defining the likelihood model, are not

updated.

Posterior model inference
@ The recursive Forward-Backward algorithm e.g. [1] is

used to calculate the posterior distribution p(k|d) with-

out explicitly calculating the constant p(d). The Forward-
@ Backward algorithm calculates p(r.|r._1,d) for all com-
binations of «. and .1, and for all values of z thereby
fully defining the posterior model p(«|d). From this we can
find estimators such as the maximum a posteriori predic-
tion, (MAP), and the marginal maximum a posteriori pre-
diction (MMAP). As well as simulate soil class profiles.
To compute the MAP predictor the implementation of the
Viterbi algorithm, e.g. [2] is needed. This recursive algorithm exploits the Markov property of the
posterior model to find the most probable soil class vector. The predictions are compared to the true
profiles or if these are not available some other reliable independent prediction. Also a a simple Naive
Bayesian (NB) predictor is used as base for comparisons. This NB predictor suits this purpose as it
does not take spatial correlation into account.
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Figure 1: Illustration of the posterior
model

Case study

Geological information

The implemented model is applied to the classification of CPT profiles at the Sheringham Shoal Off-
shore Wind Farm (SSOWF). The geology at the location is described by six formations e.g., [3], these
are in order of increasing depth, Holocene sand (HS), the Botney Cut formation (BCT), the Bolders
Bank formation (BDK), the Egmond Ground formation (EG), the Swarte Bank formation (SBK) and
the Cretaceous chalk (CK) layers beneath.

Extensive soil investigations was conducted at the SSOWF site, a series of CPT soundings and bore-
holes in the proximity of some of these sites. We will use one CPT profile and one of the bore hole
profiles. Given that the borehole is very close to the CPT profile, it assumed that the borehole soil
stratigraphy can be used as the actual soil class profile. This information is necessary both to estimate
the prior and the likelihood distributions.

Results

The profiles are coloured with red colours corresponding to clay domintated formations and blue
corresponding to sand dominated formations. Deeper colours represent deeper formations. As no
measurements are taken when chalk is hit the last formation, CK, is not present in the profiles.
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Figure 2: Training CPT profile, non-strict transition matrix: actual soil class profile, model predictions (MAP, MMAP and NB) and marginal
probabilities

The first set of profiles are calculated with a lenient prior matrix while the second set of results are
calculated with a strict prior matrix. It is clear that a stricter prior makes sure the ordering stays closer
to the observed profiles. With the less strict prior matrix the model tends to mistake formations that
are dominated by the same soil characteristics for each other.
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Figure 3: Training CPT profile, strict transition matrix: actual soil class profile, model predictions (MAP, MMAP and NB) and marginal
probabilities.
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Conclusions

This study examined the application of the Hidden Markov Model to the soil classification based
on CPT measurements. The model is composed of a Markov chain that models spatial ordering of
soil classes along a CPT profile and a Gaussian likelihood model that links CPT measurements with
different soil classes. The Bayesian formulation of the model is considered as advantageous for the
considered problem as it allows the model to integrate additional sources of information, commonly
available in a CPT-based soil classification. Additional advantages, when compared to the CPT clas-
sification based on classification charts, include arbitrary definitions of soil classes supported by the
Gaussian likelihood model. The probabilistic framework of the model allows it to account from
some of the uncertainties in the classification process. The Bayesian setting of the model provides a
framework for a more consistent treatment of additional sources of information in the CPT-based soil
classification.

The model achieved good performance when applied to the classification of CPT profiles from the
Sheringham Shoal Offshore Wind Farm. However, additional and more extensive tests are neces-
sary to further validate the model performance. Further extensions of the model are planned to adapt
the soil class definitions to data clusters instead of geological formations and to consider Bayesian
updating of the relations between soil classes and CPT measurements.
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