Designing FWT mooring system in shallow water depth

V. Arnal, T. Souliard, J.C. Gilletteaux and C. Berhault

Main Contact: Vincent Arnal, LHEEA, Centrale Nantes Email: vincent.arnal@ec-nantes.fr

INTRODUCTION

Floating Wind Turbine (FWT) prototypes and pilot farms are located in shallower zones than most of the studies in the literature about moored FWT.

- For water depth > 150m, studies have been successful in defining a conventional catenary mooring system with heavy chains.
- For shallower water depth, solutions like taut or semi-taut configurations using material elasticity of synthetic ropes could be attractive for Marine renewable energy devices [1].

Design and comparisons of conventional catenary mooring chain systems and Taut mooring systems using synthetic fibres are done at 65m.

- Comparisons in terms of Key Performance Indicators
- Importance of mooring modelling hypotheses for line tensions and floater horizontal motions.

METODOLOGY

Key Performance Indicators (KPI)

- CAPEX
- Procurement Cost
- Installation Cost k€
- Operation And Maintenance (OAM)
- Preventive maintenance
- Heavy maintenance
- Environmental Impact and risk (EI)
- Footprint on seabed
- touchdown point excursion
- Station keeping performance
- Maximum floater excursion

Design Methodology

Mooring configurations defined parametrically covering design space

Several Checks for each mooring configuration:
- Admissible Draft in static position
- Admissible eigen periods at steady positions
- Tension criteria according to DNV – OS – J103

Static ➔ Frequency Domain ➔ Time Domain

Reduced number of Design Load cases (DLC) with operating and parked wind turbine cases.

<table>
<thead>
<tr>
<th>Dir. (°)</th>
<th>Hs (m)</th>
<th>Tp (s)</th>
<th>Uc (m/s)</th>
<th>Uw (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLC 1</td>
<td>147.5</td>
<td>11</td>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>DLC 2</td>
<td>187.5</td>
<td>7</td>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>DLC 3</td>
<td>247.5</td>
<td>11</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>DLC 4</td>
<td>187.5</td>
<td>7</td>
<td>15</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 1 : Limited number of Design Load Cases

CONCLUSIONS

The main outcomes can be summarized by:

a) Different wave directions could significantly change loads in the mooring lines
b) A synthetic methodology with Key Performance Indicators has been defined
c) When taking into account not only CAPEX but also Environmental impact and Station keeping performance, Taut mooring configurations appear efficient.
d) Actual uncertainties on Marine Growth properties on site lead to a certain level of risk and unadapted mooring system.

REFERENCES


Acknowledgment

Y. Perignon from LHEEA is gratefully acknowledged for guidelines and scripts for wave data analysis. The STATIONIS project has been partly funded by BP/IFrance, region Pays de la Loire, Vaucluse department, la Metropole Aix-Marseille Provence, la region PACA laureate of 19th call for project FUI