

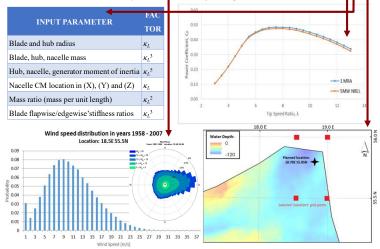
Load Estimation and O&M costs of Multi Rotor Array Turbine for the South Baltic Sea

Maciej Karczewski^{1*}, Piotr Domagalski¹, Michal Lipian¹, Lars Roar Saetran²

¹ Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland, *<u>Email</u>: maciej.karczewski@p.lodz.pl ² Department of Energy and Process Engineering, Norwegian University of Science and Engineering, 7491 Trondheim, Norway.

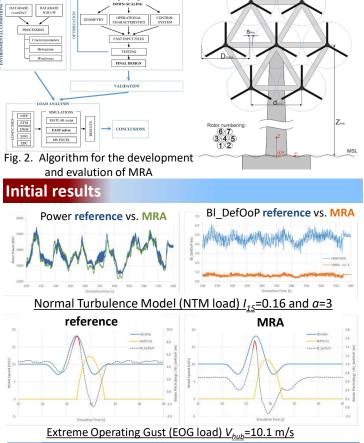
Introduction

- Poland experiences energy shortage at northern parts of the country;
- Polish RES bill significantly limited operations for on-shore wind;
- Gov't plans to support 2-3 shallow off-shore farm locations, but no sight for overall cost reduction and instigation of local heavy industry;
- AIM1: explore deep off-shore wind locations such as our idea of location 4 to show costs can be reduced.
- AIM2: propose floating off-shore wind turbine design in the form of Multi Rotor Array (MRA) to mitigate cost and technology problems. AIM3: revitalise Polish shipyard industry around our own MRA concept.


INITIAL DESIGN

Methodology

- Evaluated benchmark Vestas V100 2 MW turbine for costs at all 4 loco by using NREL design cost and scaling model¹;
- Designed a layout of 7 rotor MRA and scaled the baseline NREL 5 MW single rotor turbine² down to a 0.714 MW;
- Analysed hourly metocean data for the 50-year period;
- Preapred a FAST add-on tool in Matlab and verified structural integrity of MRA rotors using aero-servo-elastic solver FAST ver 8.0 against approved load cases³;
- Measured performance of the proposed MRA and compared it to baseline NREL 5 MW turbine.


Numerical model

- RNA of the baseline turbine was Froude scaled to derive mass
 of our 1MRA rotor¹;
- Steady-state validation of the scaled rotor model made;
- Average/extreme sea state from coastDat1 DB
- for location 4:
 - OMean wind speed V_{ave50}=10.1m/s, extreme V_{max50}=36.7m/s,
 OMean signific.wave height H_{ave45}=1.2m, wave period T_{ave45}=5.19s,
 extreme H_{max45}=9.9m. T_{Homex45}=12.3s.
- extreme H_{max45}=9.9m, T_{Hmax45}=12.3s.
 Power law wind shear exponent=0.14 adjusting induction to MRA

References

- Fingersh L., Hand M., Laxson A., Wind Turbine Design Cost and Scaling Model, Technical Report NREL/TP-500-40566, 12/2006.
- [2] Jonkman J., Butterfield S., Musial W., Scott G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report. NREL/TP-500-38060, 02/2009.
- [3] Germanischer Lloyd WindEnergie (GL), Guidelines for the Certification of Offshore Wind Turbines, 2005.

Extreme operating dust (Eod load) v hub										
Model	Bl_DefOoP				Bl_RootMx [kNm]			Bl_RootMy [kNm]		
	1MRA		NREL			NREL	%	1MRA	NREL	%
	[m]	NC%	[m]	NC%	INKA	NREL	70	INKA	NKEL	70
NWP _{8.0}	0.45	23.4	3.36	31.9	37.95	4277	0.89	290.8	6065	4.79
NWP _{11.4}	0.81	42.2	5.31	50.5	75.15	4956	1.52	530.5	9772	5.43
NWP _{18.0}	0.29	15.1	1.97	18.7	71.49	4929	1.45	248.7	5195	4.79
NTM	1.04	54.2	6.17	58.7	182.3	5376	3.39	702.7	11370	6.18
EWM	1.04	54.2	6.10	58.0	512.1	11190	4.58	503.5	10590	4.75
EOG	1.54	80.2	8.97	85.3	153.6	5056	3.04	1028	16190	6.35

Summary & conclusions

- Deep off-shore wind in Polish territorial waters: abundant and economically sound
- Around 7% overall COE reduction of location 4 as compared to loco 1
- 62% RNA mass reduction when moving from the 5 MW to MRA
- EOG load led to breaching the safety margin by 10.2% and 15.3% of allowable blade tip clearance for 1MRA and NREL designs respectively
- Proposed MRA rotor withstands other loads by substantial margins