

◆□▶▲@▶▲≣▶▲≣▶ ▲□▶

Benchmarking speed of aeroelastic analysis (Cloud to the rescue?)

Paul Thomassen (simis), Lene Eliassen (NTNU), and Loup Suja (Statkraft and NTNU)

Overview

・ロト <
回 > <
三 > <
三 ・ うへ
の
</p>

Background: Benchmarking of aeroelastic software

- Background: Benchmarking of aeroelastic software
- Is benchmarking of analysis speed relevant?

Background: Benchmarking of aeroelastic software

ヘロト ヘロト ヘビト ヘビト

- Is benchmarking of analysis speed relevant?
- Benchmark 1: Analysis speed on a PC

- Background: Benchmarking of aeroelastic software
- Is benchmarking of analysis speed relevant?
- Benchmark 1: Analysis speed on a PC
- Is an external cloud solution an alternative for increasing speed?

- Background: Benchmarking of aeroelastic software
- Is benchmarking of analysis speed relevant?
- Benchmark 1: Analysis speed on a PC
- Is an external cloud solution an alternative for increasing speed?
- Benchmark 2: Analysis speed and cost of an external cloud solution

- Background: Benchmarking of aeroelastic software
- Is benchmarking of analysis speed relevant?
- Benchmark 1: Analysis speed on a PC
- Is an external cloud solution an alternative for increasing speed?
- Benchmark 2: Analysis speed and cost of an external cloud solution
- Conclusion

・ロ・</br>

There is a long history of benchmarking

There is a long history of benchmarking NASA-Ames test (2000)

There is a long history of benchmarking NASA-Ames test (2000) OC3 (2006-10)

There is a long history of benchmarking

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

Ξ.

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)

There is a long history of benchmarking

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)

Both onshore and offshore, code to code, code to measurements

There is a long history of benchmarking

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)
- Both onshore and offshore, code to code, code to measurements

(日)、(同)、(日)、(日)、

Э

• On-going international benchmarking projects:

There is a long history of benchmarking

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)
- Both onshore and offshore, code to code, code to measurements
- On-going international benchmarking projects:
 - OC5 (IEA Wind Task 30, code to measurements)

There is a long history of benchmarking

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)
- Both onshore and offshore, code to code, code to measurements
- On-going international benchmarking projects:
 - OC5 (IEA Wind Task 30, code to measurements)
 - AVATAR (AdVanced Aerodynamic Tools for lArge Rotors www.eera-avatar.eu)

・ロト ・ 雪 ト ・ ヨ ト

There is a long history of benchmarking

- NASA-Ames test (2000)
- OC3 (2006-10)
- OC4 (2010-13)
- Both onshore and offshore, code to code, code to measurements
- On-going international benchmarking projects:
 - OC5 (IEA Wind Task 30, code to measurements)
 - AVATAR (AdVanced Aerodynamic Tools for lArge Rotors www.eera-avatar.eu)

・ 日 > ・ 雪 > ・ 目 > ・ 日 >

3

But no comparison of analysis duration

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ ○ へ ○

Typically design and certification includes 1000s of load cases

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design

Typically design and certification includes 1000s of load cases

(日)、(同)、(日)、(日)、

- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design
 - Waste of time (expensive engineering process)

Typically design and certification includes 1000s of load cases

(日)、(同)、(日)、(日)、

- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design
 - Waste of time (expensive engineering process)
 - Boring

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design
 - Waste of time (expensive engineering process)
 - Boring
- Quite standardized model size (within each tool category modal vs. FEM/MBS)

(日)、(同)、(日)、(日)、

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design
 - Waste of time (expensive engineering process)
 - Boring
- Quite standardized model size (within each tool category modal vs. FEM/MBS)

(日)、(同)、(日)、(日)、

- Typically design and certification includes 1000s of load cases
- Wall clock time on the order of 24 h on a single PC
- Measures are being taken to increase speed
 - Private clouds/clusters
- Problems:
 - Suboptimal design
 - Waste of time (expensive engineering process)
 - Boring
- Quite standardized model size (within each tool category modal vs. FEM/MBS)

Analysis speed probably has a negative influence on design

・ロト ・ 雪 ト ・ ヨ ト

・ロ> (母) (言) (言) (言) (言) (の)

3 variations:

3 variations:

Local: Different tools. Same PC, same sim. time.

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud

■ Wind turbine: OC3: NREL 5MW on a monopile

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud
- Wind turbine: OC3: NREL 5MW on a monopile
- 4 load cases all are 10 minutes, time step: 25 ms

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

3

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud
- Wind turbine: OC3: NREL 5MW on a monopile
- 4 load cases all are 10 minutes, time step: 25 ms

(日)、(同)、(日)、(日)、

Э

LC 1: steady 8 m/s wind, no waves

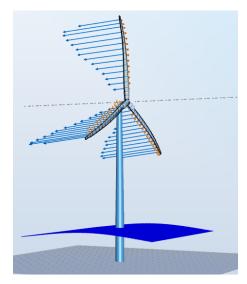
3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud
- Wind turbine: OC3: NREL 5MW on a monopile
- 4 load cases all are 10 minutes, time step: 25 ms
 - LC 1: steady 8 m/s wind, no waves
 - LC 2: no wind, regular waves: H=6m, T=10s

(日)、(同)、(日)、(日)、

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud
- Wind turbine: OC3: NREL 5MW on a monopile
- 4 load cases all are 10 minutes, time step: 25 ms
 - LC 1: steady 8 m/s wind, no waves
 - LC 2: no wind, regular waves: H=6m, T=10s
 - LC 3: steady 8 m/s wind, regular waves: H=6m, T=10s


(日)、(同)、(日)、(日)、

3 variations:

- Local: Different tools. Same PC, same sim. time.
- Local: Different PC. Same code.
- Public cloud
- Wind turbine: OC3: NREL 5MW on a monopile
- 4 load cases all are 10 minutes, time step: 25 ms
 - LC 1: steady 8 m/s wind, no waves
 - LC 2: no wind, regular waves: H=6m, T=10s
 - LC 3: steady 8 m/s wind, regular waves: H=6m, T=10s
 - LC 4: turbulent wind, mean: 18m/s, regular waves: H=6m, T=10s

(日)、(同)、(日)、(日)、

The model used for benchmarking.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Results from 3 tools:

Results from 3 tools:

FAST v.8 from NREL (Modal)

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

æ

Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

3

Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

Э

Ashes 2.1.1 from Simis (FEM)

Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

- Ashes 2.1.1 from Simis (FEM)
- Model sizes

Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

・ロト ・聞ト ・ヨト ・ヨト

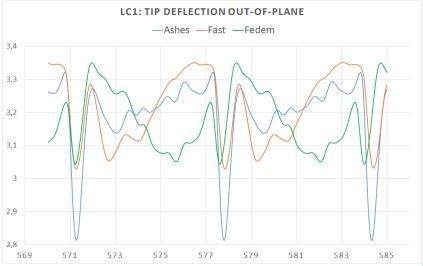
- Ashes 2.1.1 from Simis (FEM)
- Model sizes
 - FAST: 24 DOFs

Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

(日)、(同)、(日)、(日)、

- Ashes 2.1.1 from Simis (FEM)
- Model sizes
 - FAST: 24 DOFs
 - Fedem Windpower: 912 DOFs


Results from 3 tools:

- FAST v.8 from NREL (Modal)
- Fedem Windpower 1.1 from Fedem (FEM/MBS)

(日)、(同)、(日)、(日)、

- Ashes 2.1.1 from Simis (FEM)
- Model sizes
 - FAST: 24 DOFs
 - Fedem Windpower: 912 DOFs
 - Ashes: 1086 DOFs

Simplified benchmarking of analysis results: FAST v.8, Fedem Windpower, and Ashes.

DQA

Total simulation time 160 min (4x4 load cases)

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:

- Total simulation time 160 min (4×4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:
 - Processor: Intel i7-3520M CPU@2.90GHz, 4 cores

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:
 - Processor: Intel i7-3520M CPU@2.90GHz, 4 cores
 - RAM: 8MB

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:
 - Processor: Intel i7-3520M CPU@2.90GHz, 4 cores
 - RAM: 8MB

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:
 - Processor: Intel i7-3520M CPU@2.90GHz, 4 cores
 - RAM: 8MB

	FAST	Ashes	Fedem
Wall clock	7:11	27:18	38:42
Speed factor	22	6	4
1000 LCs	7 hours	28 hours	40 hours

(日)、(同)、(日)、(日)、

- Total simulation time 160 min (4x4 load cases)
- Extrapolation: 1000 x 10 min load case (10 000 min of simulation time)
- PC 1 spec:
 - Processor: Intel i7-3520M CPU@2.90GHz, 4 cores
 - RAM: 8MB

	FAST	Ashes	Fedem
Wall clock	7:11	27:18	38:42
Speed factor	22	6	4
1000 LCs	7 hours	28 hours	40 hours

Modal code is 5 times faster than average of FEM/MBS codes

(日)、(同)、(日)、(日)、

- 3

・ロ> <畳> <差> <差> <差> をつくの

Total simulation time 160 min, 6h, 12h

Total simulation time 160 min, 6h, 12hPC 2 spec:

- Total simulation time 160 min, 6h, 12h
- PC 2 spec:
 - Processor: Intel i7-3720QM CPU@2.60GHz, 8 cores

- Total simulation time 160 min, 6h, 12h
- PC 2 spec:
 - Processor: Intel i7-3720QM CPU@2.60GHz, 8 cores

・ロト ・聞ト ・ヨト ・ヨト

₹ 9Q@

RAM: 8MB

- Total simulation time 160 min, 6h, 12h
- PC 2 spec:
 - Processor: Intel i7-3720QM CPU@2.60GHz, 8 cores

・ロト ・聞ト ・ヨト ・ヨト

₹ 9Q@

RAM: 8MB

- Total simulation time 160 min, 6h, 12h
- PC 2 spec:
 - Processor: Intel i7-3720QM CPU@2.60GHz, 8 cores
 - RAM: 8MB

	PC 1 (4 cores)	PC 2 (8 cores)
Wall clock	27:18	19:22
Speed factor	6	8
1000 LCs	28 hours	20 hours

- Total simulation time 160 min, 6h, 12h
- PC 2 spec:
 - Processor: Intel i7-3720QM CPU@2.60GHz, 8 cores
 - RAM: 8MB

	PC 1 (4 cores)	PC 2 (8 cores)
Wall clock	27:18	19:22
Speed factor	6	8
1000 LCs	28 hours	20 hours

Approximately same speed factor for other durations (6h, 12h)

(日)、(同)、(日)、(日)、

(Public) Cloud computing

・ロト (母) (言) (言) (言) () (ロ) (母) ()

(Public) Cloud computing

Reasons for being interesting:

Reasons for being interesting:

Batch analysis of many LCs fits perfectly for cloud

Reasons for being interesting:

- Batch analysis of many LCs fits perfectly for cloud
 - Short

Reasons for being interesting:

Batch analysis of many LCs fits perfectly for cloud

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

æ

- Short
- Independent

Reasons for being interesting:

- Batch analysis of many LCs fits perfectly for cloud
 - Short
 - Independent
- Giants are competing on price for market share: Amazon, Google, Microsoft

(日)、(同)、(日)、(日)、

э

Reasons for being interesting:

- Batch analysis of many LCs fits perfectly for cloud
 - Short
 - Independent
- Giants are competing on price for market share: Amazon, Google, Microsoft
 - Prices have been decreasing according to Moore's law

Reasons for being interesting:

- Batch analysis of many LCs fits perfectly for cloud
 - Short
 - Independent
- Giants are competing on price for market share: Amazon, Google, Microsoft
 - Prices have been decreasing according to Moore's law

(日) (同) (日) (日)

More flexible than private clouds/clusters

PC 2 vs. Amazon Cloud

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Simulation time: 6 h (36 x 10 min LC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Simulation time: 6 h (36 × 10 min LC)
- Cloud: 1 node with 8 cores, computation optimized

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Simulation time: 6 h (36 × 10 min LC)
- Cloud: 1 node with 8 cores, computation optimized

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

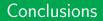
- Simulation time: 6 h (36 × 10 min LC)
- Cloud: 1 node with 8 cores, computation optimized

	PC 2	Amazon cloud
Wall clock	43:34	24:56
Speed factor	8	14
Cost	0	0.42 \$/hour
1000 LCs	7 hours	1 hour (12 nodes)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Simulation time: 6 h (36 × 10 min LC)
- Cloud: 1 node with 8 cores, computation optimized

	PC 2	Amazon cloud
Wall clock	43:34	24:56
Speed factor	8	14
Cost	0	0.42 \$/hour
1000 LCs	7 hours	1 hour (12 nodes)


Extrapolation: Running 1000 LCs (10 000 min) in 1 hour on Amazon cloud costs \$ 5.

・ロト・4日・4日・4日・日・900

■ 1000 LCs simulated on 1 PC takes 4-7 h with a modal code

1000 LCs simulated on 1 PC takes 4-7 h with a modal code and 4-5 times longer with a FEM/MBS code

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code

(日)、(同)、(日)、(日)、

э.

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code

・ロト ・ 雪 ト ・ ヨ ト

э.

and probably for \$ 1 with a modal code

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code and 4.5 times languagith a EEM (MPS and a
 - and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code

(日)、(同)、(日)、(日)、

- and probably for \$ 1 with a modal code
- and half of that next year

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 - and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code
 - and probably for \$ 1 with a modal code
 - and half of that next year
- BUT: to be a realistic alternative using the cloud must be convenient and predictable

イロト イポト イヨト イヨト

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 - and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code
 - and probably for \$ 1 with a modal code
 - and half of that next year
- BUT: to be a realistic alternative using the cloud must be convenient and predictable

イロト イポト イヨト イヨト

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 - and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code
 - and probably for \$ 1 with a modal code
 - and half of that next year
- BUT: to be a realistic alternative using the cloud must be convenient and predictable

What are the implications of aeroelastic analysis becoming instant and free?

- 1000 LCs simulated on 1 PC takes 4-7 h with a modal code
 and 4-5 times longer with a FEM/MBS code
- Public cloud computing presents an interesting alternative to increase speed and/or lowering costs
- 1000 LCs (10 000 min) can today be simulated in one hour for \$ 5 with a FEM code
 - and probably for \$ 1 with a modal code
 - and half of that next year
- BUT: to be a realistic alternative using the cloud must be convenient and predictable

What are the implications of aeroelastic analysis becoming close to instant, and with a marginal cost close to nothing?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト