

Wind Tunnel Tests and Wake Effects of Pitch and Load Controlled Model Wind Turbines

Jannik Schottler, A. Hölling, J. Peinke, M. Hölling

ForWind, Center for Wind Energy Research, University of Oldenburg

jannik.schottler@uni-oldenburg.de

wind farms: interaction of turbines inevitable !

- power losses due to wake effects
- increased loads

W understanding of <u>interactions</u> necessary

[Barthelmie et.al. 2010]

[Crespo et.al. 1999]

wind farms: interaction of turbines inevitable !

- power losses due to wake effects
- increased loads

W understanding of <u>interactions</u> necessary

[Barthelmie et.al. 2010]

[Crespo et.al. 1999]

wind farms: interaction of turbines inevitable !

- power losses due to wake effects
- increased loads

W understanding of <u>interactions</u> necessary

[Barthelmie et.al. 2010]

[Crespo et.al. 1999]

Field measurements:

expensive, changing boundary conditions, limited availability

Field measurements:

expensive, changing boundary conditions, limited availability

CFD:

often model-based, (computational) costs, **validation**?

Field measurements:

expensive, changing boundary conditions, limited availability

CFD:

often model-based, (computational) costs, **validation**?

Experiments:

inexpensive, tunable boundary conditions, **upscaling**?

behind the rotor...

behind the rotor...

- **W** Decreased wind speed
 - power losses

Increased turbulence intensityhigher loads

behind the rotor...

- Decreased wind speed
 - power losses

Increased turbulence intensityhigher loads

behind the rotor...

- **W** Decreased wind speed
 - power losses

Increased turbulence intensityhigher loads

behind the rotor...

- Decreased wind speed
 - power losses
- Increased turbulence intensityhigher loads

Model Wind Turbines

₩D=58cm

- variable pitch, variable speed
- ₩ automated control

 \forall measured variables: P, ω, β, T

▼vacuum-casted blades (SD7003)

Pitching Mechanism

▼ collective pitch ▼ closed-loop ▼ $\Delta\beta \le 30^\circ$

C A R L V O N O S S I E T Z K Y

UNIVERSITÄT OLDENBURG

Pitching Mechanism

 \overrightarrow{v} collective pitch \overrightarrow{v} closed-loop $\overrightarrow{v} \Delta \beta \leq 30^{\circ}$

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

Partial Load Control

Partial Load Control

Partial Load Control

T2: independent partial load control - maximizing cp

 ∇ T1: systematic variation of γ, β

T2: independent partial load control - maximizing cp

 $\mathbf{\nabla}$ T1: systematic variation of $\gamma,~eta$

Results

Results

Results

▼ two 'variable speed, variable pitch' model wind turbines
▼ tested partial load control

 \overline{W} two 'variable speed, variable pitch' model wind turbines \overline{W} tested partial load control

improved power output for yaw misalignment in tandem-configuration
 +6% for x/D=3 at 18° yaw misalignment of T1

▼ in good agreement with simulations!

Outlook

Active Grid

,custom' turbulence

,custom' turbulence

Active Grid

LiDAR measurements by Risø, DTU

Experiments: ,Smart Blades' Project, Nico Reinke,André Fuchs,Tim Homeyer. ForWind, University of Oldenburg

Acknowledgement

Parts of this work was funded by the

Thank you for your attention!

Acknowledgement

Parts of this work was funded by the

Thank you for your attention!

cpmax for different wind speeds and pitch angles

ForWind V

Electrical Load Variation

U_{St} of the **maximal** c_P for each wind speed

Electrical Load Variation

 $\nu = const.$

U_{St} of the **maximal** c_P for each wind speed

change in pitch influences P2
for however: no gain in P_{tot}!
 $\beta_{P_{1,opt}} = \beta_{P_{tot,opt}}$

 \overrightarrow{v} collective pitch \overrightarrow{v} "closed-loop" $\overrightarrow{v} \Delta\beta \leq 30^{\circ}$

wake expansion II

$\overline{\mathbf{w}}$ wind tunnel: open test section - free stream

wake expansion II

$\overline{\mathbf{w}}$ wind tunnel: open test section - free stream

turbulent conditions at T2 for large x

$$\vec{\nu}_{ind_1}(\theta) = \vec{\nu}_{ind_2}(\theta + 180^\circ)$$

 $\vec{\nu}_{res_1}(\theta) \neq \vec{\nu}_{res_2}(\theta + 180^{\circ})$

$$\vec{\nu}_{res} = \vec{\nu}_{ind} - \vec{\Omega} \times \vec{r} + \nu_{\infty}$$
$$\vec{\nu}_{res_1}(\theta) = \vec{\nu}_{res_2}(\theta + 180^\circ)$$

$$\vec{\nu}_{\infty}(\theta) \neq \vec{\nu}_{\infty}(\theta + 180^{\circ})$$

$$c_{T,1} = c_{T,2} \qquad \longleftarrow \qquad c_{T,1} \neq c_{T,2}$$

de Haans 2011

ForWind Energy Research

