Real-time hybrid model testing of floating wind turbines: sensitivity to limited actuation

Erin Bachynski (MARINTEK/NTNU), Valentin Chabaud (NTNU), Thomas Sauder (MARINTEK) 12th Deep Sea Offshore Wind R&D Conference, DeepWind'2015 February 4-6, 2015

MARINTEK

Norsk Marinteknisk Forskningsinstitutt

Real-time hybrid model testing (ReaTHM)

- Also called Hardware-in-the-Loop (HiL) or Model-in-the-Loop (MiL)
- The test specimen is part real and part virtual

MARINTEK

- Only the key component with unknown dynamics is physically tested
- Some conditions may be more accurately represented by a computer model than by laboratory conditions
- Characteristics of the simulated system can be easily varied

Real-time hybrid model testing of floating wind turbines: sensitivity to limited actuation

•What happens if we are not able to actuate all of the forces and moments?

Outline

- Methodology for sensitivity study
- •5MW-CSC platform
- Baseline platform performance
- Sensitivity to limited actuation

Computational methodology

Source: NREL/Wind power today, 2010.

MARINTEK

5MW-CSC platform

MARINTEK

Diameter of center and offset columns	6.5 m	
Pontoon height	6.0 m	
Pontoon width	9.0 m	
Distance from center column midpoint to pontoon edge	45.5 m	
Draft	30.0 m	
Freeboard	20.0 m	
Water depth	200 m	
Anchor point radius	884 m	
Mooring line weight (total)	258 tonnes	
Hull steel mass	1686 tonnes	
Turbine	NREL 5MW	

Designed for NOWITECH by C. Luan

Environmental Conditions

	EC 1	EC 2	EC 3	EC 4
U (m/s)	8.0	11.4	20.0	49.0
H _s (m)	2.5	3.0	5.9	14.4
T _p (s)	9.8	10.1	11.3	13.3
I (%) (NTM)	17.1	14.0	11.5	10.0
I (%) (ETM)	28.1	23.2	15.7	10.7

MARINTEK

 Representative belowrated, at rated, aboverated, and storm conditions

- Normal and extreme turbulence considered
- Misalignment between wind and waves
- 1-hour simulations

Baseline performance: standard deviation of motions

1 NTM

- EC 3 NTM

EC 1 ETM ---- EC 3 ETM

() SINTEF

MARINTEK

surge (m)

heave (m)

pitch (deg)

0 1.5

05

0.5 L

Baseline performance: standard deviation of tower base bending moments and mooring line tension

MARINTEK

Sensitivity to limited actuation

- non-thrust aerodynamic loads:
 - pitch moment
 - yaw moment
 - sway force
 - heave force
- thrust directionality
- gyroscopic moments
- dynamic variation of generator torque

Results of removing rotor aerodynamic pitch moment

1-6% of total aero pitch

MARINT

- Depends on tilt, wind shear, turbulence, platform motions
- Below rated: affects sway, roll, M_{FA}
- Above rated: affects pitch, line tension and M_{FA}
 - See figure: dashed lines are without aero pitch
 - MFA has a larger wave-frequency component (not shown), which is not affected by aero pitch
 - Effect on tower-bending frequency is also important
 - 10-14 % changes in std dev of line tension and pitch motion

 $\boldsymbol{\beta}_{\text{wave}}$

Results of removing aerodynamic sway, heave, and yaw

Sway:

- Sway motion, roll motion, and tower side-side bending moment
- Large relative effect in aligned conditions (due to small absolute values)

Heave

- <3% effect on key responses in operational conditions
- May be more important in parked (storm conditions)

•Yaw

Large effect on yaw motions at low frequencies (80% change in std. dev)

Results of removing thrust directionality

Horizontal directionality

- thrust actuator does not follow the motions of the hub in the horizontal plane
- Affects sway, roll, M_{ss}
- 50% effect on roll std. dev. in cases where roll ≈ pitch

- Vertical directionality
 - Thrust actuator does not follow the vertical hub motions
 - Less than 5% effect on key responses in operational conditions

Results of removing gyroscopic moments and dynamic generator torque

- •Gyroscopic moments
 - Only relevant for the operational conditions
 - 5 % change in the std.dev. of the yaw motion
 - Effect seen near the yaw and pitch natural frequencies

- Dynamic generator torque
 - Control system prescribes constant torque above rated
 - Affects roll and M_{SS} in ECs
 1 and 2 (4-9% effect on
 std. dev., but small
 absolute values)

Summary

- Methodology for investigating the sensitivity of ReaTHM testing of FWTs to limited actuation of aerodynamic forces
- For the given platform, with small motions, nonthrust/non-torque aerodynamic loads had relatively large effects on motions
- Informed trade-offs between complexity and fidelity can be made for experimental design

MARINTEK Norsk Marinteknisk Forskningsinstitutt

